Lumatone mapping for 18edo
There are many conceivable ways to map 18edo onto the onto the Lumatone keyboard. However, it has no generators that create a diatonic or antidiatonic scale that covers the whole gamut, so the Standard Lumatone mapping for Pythagorean is not one of them. Due to its composite nature, only two generators work at all to produce single period mos scales.
Wide fifth
7/18 produces a 5L 3s-based Jankó mapping.

0
3
1
4
7
10
13
17
2
5
8
11
14
17
2
0
3
6
9
12
15
0
3
6
9
12
16
1
4
7
10
13
16
1
4
7
10
13
16
1
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
5
8
11
14
17
2
5
8
11
14
17
2
5
8
15
0
3
6
9
12
15
0
3
6
9
4
7
10
13
16
1
4
7
14
17
2
5
8
3
6
This can be compressed down to a 2L 1s mapping that is useful for maximising range.

16
5
2
9
16
5
12
17
6
13
2
9
16
5
12
3
10
17
6
13
2
9
16
5
12
1
0
7
14
3
10
17
6
13
2
9
16
5
12
1
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
13
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
4
13
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
9
16
5
12
1
8
15
4
11
0
7
14
3
10
16
5
12
1
8
15
4
11
0
7
14
16
5
12
1
8
15
4
11
5
12
1
8
15
5
12
Flat neutral thirds
5/18 produces a 4L 3s-based Jankó mapping.

0
3
2
5
8
11
14
1
4
7
10
13
16
1
4
3
6
9
12
15
0
3
6
9
12
15
2
5
8
11
14
17
2
5
8
11
14
17
2
5
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
1
4
7
10
13
16
1
4
7
10
13
16
1
4
12
15
0
3
6
9
12
15
0
3
6
2
5
8
11
14
17
2
5
13
16
1
4
7
3
6
This can also be compressed down to a 3L 1s mapping that is useful if you want to keep octaves as close to horizontal as possible.

16
3
1
6
11
16
3
17
4
9
14
1
6
11
16
2
7
12
17
4
9
14
1
6
11
16
0
5
10
15
2
7
12
17
4
9
14
1
6
11
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
11
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
0
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
0
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
13
0
5
10
15
2
7
12
17
4
9
8
13
0
5
10
15
2
7
8
13
0
5
10
3
8