166edt

From Xenharmonic Wiki
Revision as of 09:11, 5 October 2024 by BudjarnLambeth (talk | contribs) (Intro inter harm)
Jump to navigation Jump to search
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 165edt 166edt 167edt →
Prime factorization 2 × 83
Step size 11.4576 ¢ 
Octave 105\166edt (1203.04 ¢)
Consistency limit 3
Distinct consistency limit 3

166 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 166edt or 166ed3), is a nonoctave tuning system that divides the interval of 3/1 into 166 equal parts of about 11.5 ¢ each. Each step represents a frequency ratio of 31/166, or the 166th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 11.46 7.83
2 22.92 15.66
3 34.37 23.49 50/49, 51/50
4 45.83 31.33 38/37, 39/38
5 57.29 39.16 31/30
6 68.75 46.99 51/49
7 80.2 54.82 22/21
8 91.66 62.65 39/37
9 103.12 70.48 35/33
10 114.58 78.31 31/29, 47/44
11 126.03 86.14
12 137.49 93.98 13/12
13 148.95 101.81
14 160.41 109.64 34/31, 45/41
15 171.86 117.47
16 183.32 125.3 10/9
17 194.78 133.13 47/42
18 206.24 140.96
19 217.69 148.8 17/15
20 229.15 156.63
21 240.61 164.46 23/20, 54/47
22 252.07 172.29
23 263.52 180.12
24 274.98 187.95 34/29, 41/35
25 286.44 195.78 46/39
26 297.9 203.61
27 309.35 211.45 49/41
28 320.81 219.28
29 332.27 227.11
30 343.73 234.94 50/41
31 355.18 242.77 27/22, 43/35
32 366.64 250.6 21/17, 47/38
33 378.1 258.43 46/37, 51/41
34 389.56 266.27
35 401.01 274.1 29/23
36 412.47 281.93
37 423.93 289.76 23/18, 60/47
38 435.39 297.59 9/7
39 446.84 305.42 22/17, 57/44
40 458.3 313.25 43/33
41 469.76 321.08
42 481.22 328.92 33/25, 37/28
43 492.68 336.75
44 504.13 344.58
45 515.59 352.41 31/23
46 527.05 360.24 42/31
47 538.51 368.07
48 549.96 375.9
49 561.42 383.73 47/34
50 572.88 391.57 39/28
51 584.34 399.4
52 595.79 407.23
53 607.25 415.06 27/19, 44/31
54 618.71 422.89 10/7
55 630.17 430.72
56 641.62 438.55 42/29
57 653.08 446.39 51/35
58 664.54 454.22
59 676 462.05 34/23
60 687.45 469.88 58/39
61 698.91 477.71
62 710.37 485.54
63 721.83 493.37 41/27, 44/29, 47/31
64 733.28 501.2 29/19
65 744.74 509.04 20/13
66 756.2 516.87
67 767.66 524.7
68 779.11 532.53 58/37
69 790.57 540.36 30/19
70 802.03 548.19 27/17
71 813.49 556.02
72 824.94 563.86 29/18
73 836.4 571.69 47/29, 60/37
74 847.86 579.52 31/19
75 859.32 587.35 23/14
76 870.77 595.18
77 882.23 603.01
78 893.69 610.84 57/34
79 905.15 618.67
80 916.6 626.51
81 928.06 634.34
82 939.52 642.17 43/25
83 950.98 650
84 962.44 657.83
85 973.89 665.66
86 985.35 673.49
87 996.81 681.33
88 1008.27 689.16 34/19
89 1019.72 696.99
90 1031.18 704.82 49/27
91 1042.64 712.65 42/23
92 1054.1 720.48 57/31
93 1065.55 728.31 37/20, 50/27
94 1077.01 736.14 41/22, 54/29
95 1088.47 743.98
96 1099.93 751.81 17/9
97 1111.38 759.64 19/10
98 1122.84 767.47 44/23
99 1134.3 775.3
100 1145.76 783.13
101 1157.21 790.96 39/20, 41/21
102 1168.67 798.8 57/29
103 1180.13 806.63
104 1191.59 814.46
105 1203.04 822.29
106 1214.5 830.12
107 1225.96 837.95
108 1237.42 845.78 47/23
109 1248.87 853.61 35/17
110 1260.33 861.45 29/14
111 1271.79 869.28
112 1283.25 877.11 21/10
113 1294.7 884.94 19/9
114 1306.16 892.77
115 1317.62 900.6
116 1329.08 908.43 28/13
117 1340.53 916.27
118 1351.99 924.1
119 1363.45 931.93
120 1374.91 939.76 31/14
121 1386.36 947.59 49/22
122 1397.82 955.42
123 1409.28 963.25
124 1420.74 971.08 25/11
125 1432.2 978.92
126 1443.65 986.75
127 1455.11 994.58 44/19, 51/22
128 1466.57 1002.41 7/3
129 1478.03 1010.24 47/20, 54/23
130 1489.48 1018.07
131 1500.94 1025.9 50/21
132 1512.4 1033.73
133 1523.86 1041.57 41/17
134 1535.31 1049.4 17/7
135 1546.77 1057.23 22/9
136 1558.23 1065.06
137 1569.69 1072.89
138 1581.14 1080.72
139 1592.6 1088.55
140 1604.06 1096.39
141 1615.52 1104.22
142 1626.97 1112.05
143 1638.43 1119.88
144 1649.89 1127.71
145 1661.35 1135.54 47/18, 60/23
146 1672.8 1143.37
147 1684.26 1151.2 45/17
148 1695.72 1159.04
149 1707.18 1166.87
150 1718.63 1174.7 27/10
151 1730.09 1182.53
152 1741.55 1190.36 41/15
153 1753.01 1198.19
154 1764.46 1206.02 36/13
155 1775.92 1213.86
156 1787.38 1221.69
157 1798.84 1229.52
158 1810.29 1237.35 37/13
159 1821.75 1245.18
160 1833.21 1253.01 49/17
161 1844.67 1260.84
162 1856.12 1268.67 38/13
163 1867.58 1276.51 50/17
164 1879.04 1284.34
165 1890.5 1292.17
166 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 166edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.04 +0.00 -5.37 -2.13 +3.04 -0.30 -2.33 +0.00 +0.92 -3.68 -5.37
Relative (%) +26.6 +0.0 -46.9 -18.6 +26.6 -2.6 -20.3 +0.0 +8.0 -32.1 -46.9
Steps
(reduced)
105
(105)
166
(0)
209
(43)
243
(77)
271
(105)
294
(128)
314
(148)
332
(0)
348
(16)
362
(30)
375
(43)
Approximation of harmonics in 166edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +5.01 +2.74 -2.13 +0.72 -1.12 +3.04 +1.10 +3.96 -0.30 -0.64 +2.61
Relative (%) +43.7 +23.9 -18.6 +6.3 -9.8 +26.6 +9.6 +34.6 -2.6 -5.6 +22.8
Steps
(reduced)
388
(56)
399
(67)
409
(77)
419
(87)
428
(96)
437
(105)
445
(113)
453
(121)
460
(128)
467
(135)
474
(142)