167edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 166edt167edt168edt →
Prime factorization 167 (prime)
Step size 11.389¢ 
Octave 105\167edt (1195.84¢)
Consistency limit 2
Distinct consistency limit 2

167 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 167edt or 167ed3), is a nonoctave tuning system that divides the interval of 3/1 into 167 equal parts of about 11.4 ¢ each. Each step represents a frequency ratio of 31/167, or the 167th root of 3.

Harmonics

Approximation of harmonics in 167edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.16 +0.00 +3.07 +3.98 -4.16 +2.30 -1.09 +0.00 -0.18 +5.65 +3.07
Relative (%) -36.5 +0.0 +26.9 +34.9 -36.5 +20.2 -9.6 +0.0 -1.6 +49.6 +26.9
Steps
(reduced)
105
(105)
167
(0)
211
(44)
245
(78)
272
(105)
296
(129)
316
(149)
334
(0)
350
(16)
365
(31)
378
(44)
Approximation of harmonics in 167edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.16 -1.86 +3.98 -5.25 +3.68 -4.16 +4.74 -4.34 +2.30 +1.49 +4.26
Relative (%) +10.2 -16.3 +34.9 -46.1 +32.3 -36.5 +41.6 -38.1 +20.2 +13.1 +37.4
Steps
(reduced)
390
(56)
401
(67)
412
(78)
421
(87)
431
(97)
439
(105)
448
(114)
455
(121)
463
(129)
470
(136)
477
(143)