57edo
← 56edo | 57edo | 58edo → |
57edo divides the octave into 57 parts of size 21.053¢. It can be used to tune mothra temperament, and is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup. One way to describe 57 is that it has a 5-limit part consisting of three versions of 19, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the 19-limit 46&57 temperament Heinz.
5-limit commas: 81/80, 3125/3072
Just approximation
Script error: No such module "primes_in_edo".
Intervals
Degree | Cents |
---|---|
0 | 0.0000 |
1 | 21.0526 |
2 | 42.1053 |
3 | 63.1579 |
4 | 84.2105 |
5 | 105.2632 |
6 | 126.3158 |
7 | 147.3684 |
8 | 168.42105 |
9 | 189.4737 |
10 | 210.5263 |
11 | 231.57895 |
12 | 252.6316 |
13 | 273.6842 |
14 | 294.7368 |
15 | 315.7895 |
16 | 336.8421 |
17 | 357.8947 |
18 | 378.9474 |
19 | 400 |
20 | 421.0526 |
21 | 442.1053 |
22 | 463.1579 |
23 | 484.2105 |
24 | 505.2632 |
25 | 526.3158 |
26 | 547.3684 |
27 | 568.42105 |
28 | 589.4737 |
29 | 610.5263 |
30 | 631.57895 |
31 | 652.6316 |
32 | 673.6842 |
33 | 694.7368 |
34 | 715.7895 |
35 | 736.8421 |
36 | 757.8947 |
37 | 778.9474 |
38 | 800 |
39 | 821.0526 |
40 | 842.1053 |
41 | 863.1579 |
42 | 884.2105 |
43 | 905.2632 |
44 | 926.3158 |
45 | 947.3684 |
46 | 968.42105 |
47 | 989.4737 |
48 | 1010.5263 |
49 | 1031.57895 |
50 | 1052.6316 |
51 | 1073.6842 |
52 | 1094.7368 |
53 | 1115.7895 |
54 | 1136.8421 |
55 | 1157.8947 |
56 | 1178.9474 |
57 | 1200 |
Modes of 57edo
2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3MOS of type 18L 21s (augene)