User:MisterShafXen/Sandbox
34ed7
← 33ed7 | 34ed7 | 35ed7 → |
34 equal divisions of the 7th harmonic (abbreviated 34ed7) is a nonoctave tuning system that divides the interval of 7/1 into 34 equal parts of about 99.1 ¢ each. Each step represents a frequency ratio of 71/34, or the 34th root of 7. This tuning is a compressed 12edo.
Steps | Cents | Approximate ratios | 12edo note names | 9\109-based note names |
---|---|---|---|---|
0 | 0 | 1/1 | C | |
1 | 99.1 | 19/18 | C#/Db | ^^Db |
2 | 198.2 | 9/8, 28/25 | D | vD |
3 | 297.2 | 13/11, 19/16, 25/21 | D#/Eb | ^Eb |
4 | 396.3 | 24/19 | E | vvE |
5 | 495.4 | 4/3 | F | |
6 | 594.5 | F#/Gb | ^^Gb | |
7 | 693.6 | 3/2 | G | vG |
8 | 792.7 | 19/12 | G#/Ab | ^Ab |
9 | 891.7 | 5/3 | A | vvA |
10 | 990.8 | 16/9, 23/13 | A#/Bb | Bb |
11 | 1089.9 | 15/8 | B | vvvB |
12 | 1189 | C | vC | |
13 | 1288.1 | 19/9, 21/10 | C#/Db | ^Db |
14 | 1387.2 | 20/9 | D | vvD |
15 | 1486.2 | 26/11 | D#/Eb | Eb |
16 | 1585.3 | 5/2 | E | vvvE |
17 | 1684.4 | F | vF | |
18 | 1783.5 | 14/5 | F#/Gb | ^Gb |
19 | 1882.6 | G | vvG | |
20 | 1981.7 | 22/7 | G#/Ab | Ab |
21 | 2080.7 | 10/3 | A | vvvA |
22 | 2179.8 | A#/Bb | vBb | |
23 | 2278.9 | 26/7 | B | vvvvB |
24 | 2378 | C | vvC | |
25 | 2477.1 | 21/5, 25/6 | C#/Db | Db |
26 | 2576.2 | D | vvvD | |
27 | 2675.2 | 14/3 | D#/Eb | vEb |
28 | 2774.3 | E | vvvvE | |
29 | 2873.4 | 21/4 | F | vvF |
30 | 2972.5 | F#/Gb | Gb | |
31 | 3071.6 | G | vvvG | |
32 | 3170.7 | 25/4 | G#/Ab | vAb |
33 | 3269.7 | A | vvvvA | |
34 | 3368.8 | 7/1 | A#/Bb | vvBb |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.0 | -19.4 | -22.0 | -12.0 | -30.4 | +0.0 | -33.0 | -38.8 | -23.0 | +10.2 | -41.4 |
Relative (%) | -11.1 | -19.6 | -22.2 | -12.1 | -30.7 | +0.0 | -33.3 | -39.1 | -23.2 | +10.3 | -41.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (0) |
36 (2) |
38 (4) |
40 (6) |
42 (8) |
43 (9) |
50ed4/3
← 49ed4/3 | 50ed4/3 | 51ed4/3 → |
(semiconvergent)
50 equal divisions of 4/3 (abbreviated 50ed4/3) is a nonoctave tuning system that divides the interval of 4/3 into 50 equal parts of about 9.96 ¢ each. Each step represents a frequency ratio of (4/3)1/50, or the 50th root of 4/3.
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 10 | |
2 | 19.9 | |
3 | 29.9 | |
4 | 39.8 | |
5 | 49.8 | |
6 | 59.8 | 30/29, 31/30 |
7 | 69.7 | 27/26 |
8 | 79.7 | 22/21, 23/22 |
9 | 89.6 | 21/20 |
10 | 99.6 | 18/17 |
11 | 109.6 | |
12 | 119.5 | 29/27, 31/29 |
13 | 129.5 | 27/25 |
14 | 139.5 | |
15 | 149.4 | 25/23 |
16 | 159.4 | 23/21 |
17 | 169.3 | 11/10, 21/19 |
18 | 179.3 | 10/9 |
19 | 189.3 | 29/26 |
20 | 199.2 | |
21 | 209.2 | 26/23 |
22 | 219.1 | |
23 | 229.1 | |
24 | 239.1 | 31/27 |
25 | 249 | 15/13, 22/19 |
26 | 259 | |
27 | 268.9 | 7/6 |
28 | 278.9 | 20/17, 27/23 |
29 | 288.9 | 13/11 |
30 | 298.8 | |
31 | 308.8 | 31/26 |
32 | 318.7 | |
33 | 328.7 | 23/19 |
34 | 338.7 | 17/14 |
35 | 348.6 | 11/9 |
36 | 358.6 | 27/22 |
37 | 368.6 | 21/17, 26/21, 31/25 |
38 | 378.5 | |
39 | 388.5 | |
40 | 398.4 | 29/23 |
41 | 408.4 | 19/15 |
42 | 418.4 | |
43 | 428.3 | 23/18 |
44 | 438.3 | 9/7 |
45 | 448.2 | 22/17 |
46 | 458.2 | 13/10, 30/23 |
47 | 468.2 | |
48 | 478.1 | 25/19, 29/22 |
49 | 488.1 | |
50 | 498 |