Lumatone mapping for 39edo

From Xenharmonic Wiki
Revision as of 15:08, 23 March 2025 by ArrowHead294 (talk | contribs)
Jump to navigation Jump to search

There are many conceivable ways to map 39edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

Diatonic

6
13
8
15
22
29
36
3
10
17
24
31
38
6
13
5
12
19
26
33
1
8
15
22
29
36
0
7
14
21
28
35
3
10
17
24
31
38
6
13
2
9
16
23
30
37
5
12
19
26
33
1
8
15
22
29
36
36
4
11
18
25
32
0
7
14
21
28
35
3
10
17
24
31
38
6
13
38
6
13
20
27
34
2
9
16
23
30
37
5
12
19
26
33
1
8
15
22
29
36
33
1
8
15
22
29
36
4
11
18
25
32
0
7
14
21
28
35
3
10
17
24
31
38
6
13
3
10
17
24
31
38
6
13
20
27
34
2
9
16
23
30
37
5
12
19
26
33
1
8
15
22
29
36
19
26
33
1
8
15
22
29
36
4
11
18
25
32
0
7
14
21
28
35
3
10
17
24
31
38
3
10
17
24
31
38
6
13
20
27
34
2
9
16
23
30
37
5
12
19
26
33
1
19
26
33
1
8
15
22
29
36
4
11
18
25
32
0
7
14
21
28
35
3
10
17
24
31
38
6
13
20
27
34
2
9
16
23
30
37
19
26
33
1
8
15
22
29
36
4
11
18
25
32
3
10
17
24
31
38
6
13
20
27
34
19
26
33
1
8
15
22
29
3
10
17
24
31
19
26

Triforce

Since it is its optimal patent val, the triforce mapping is also a particularly good way to organise the intervals of 39edo.

0
8
5
13
21
29
37
2
10
18
26
34
3
11
19
7
15
23
31
0
8
16
24
32
1
9
4
12
20
28
36
5
13
21
29
37
6
14
22
30
9
17
25
33
2
10
18
26
34
3
11
19
27
35
4
12
20
6
14
22
30
38
7
15
23
31
0
8
16
24
32
1
9
17
25
33
2
11
19
27
35
4
12
20
28
36
5
13
21
29
37
6
14
22
30
38
7
15
23
31
8
16
24
32
1
9
17
25
33
2
10
18
26
34
3
11
19
27
35
4
12
20
28
36
5
13
21
29
37
6
14
22
30
38
7
15
23
31
0
8
16
24
32
1
9
17
25
33
2
10
18
26
34
3
3
11
19
27
35
4
12
20
28
36
5
13
21
29
37
6
14
22
30
38
7
15
23
31
0
8
32
1
9
17
25
33
2
10
18
26
34
3
11
19
27
35
4
12
20
28
36
5
13
14
22
30
38
7
15
23
31
0
8
16
24
32
1
9
17
25
33
2
10
4
12
20
28
36
5
13
21
29
37
6
14
22
30
38
7
15
25
33
2
10
18
26
34
3
11
19
27
35
4
12
15
23
31
0
8
16
24
32
1
9
17
36
5
13
21
29
37
6
14
26
34
3
11
19
8
16

Amity

The Lumatone mapping for Amit is also above average at putting good intervals close together, and makes chromatic runs much easier than the previous two layouts.

0
6
5
11
17
23
29
4
10
16
22
28
34
1
7
9
15
21
27
33
0
6
12
18
24
30
8
14
20
26
32
38
5
11
17
23
29
35
2
8
13
19
25
31
37
4
10
16
22
28
34
1
7
13
19
25
31
12
18
24
30
36
3
9
15
21
27
33
0
6
12
18
24
30
36
3
9
17
23
29
35
2
8
14
20
26
32
38
5
11
17
23
29
35
2
8
14
20
26
32
16
22
28
34
1
7
13
19
25
31
37
4
10
16
22
28
34
1
7
13
19
25
31
37
4
10
27
33
0
6
12
18
24
30
36
3
9
15
21
27
33
0
6
12
18
24
30
36
3
9
15
21
27
33
5
11
17
23
29
35
2
8
14
20
26
32
38
5
11
17
23
29
35
2
8
14
20
26
32
38
28
34
1
7
13
19
25
31
37
4
10
16
22
28
34
1
7
13
19
25
31
37
4
6
12
18
24
30
36
3
9
15
21
27
33
0
6
12
18
24
30
36
3
29
35
2
8
14
20
26
32
38
5
11
17
23
29
35
2
8
7
13
19
25
31
37
4
10
16
22
28
34
1
7
30
36
3
9
15
21
27
33
0
6
12
8
14
20
26
32
38
5
11
31
37
4
10
16
9
15

Semiquartal (Immunity)

The Immunity mapping gives excellent range, but the resulting 5L 4s scale has a 7:1 step ratio, which makes it very lopsided.

21
29
28
36
5
13
21
27
35
4
12
20
28
36
5
34
3
11
19
27
35
4
12
20
28
36
33
2
10
18
26
34
3
11
19
27
35
4
12
20
1
9
17
25
33
2
10
18
26
34
3
11
19
27
35
4
12
0
8
16
24
32
1
9
17
25
33
2
10
18
26
34
3
11
19
27
35
7
15
23
31
0
8
16
24
32
1
9
17
25
33
2
10
18
26
34
3
11
19
27
6
14
22
30
38
7
15
23
31
0
8
16
24
32
1
9
17
25
33
2
10
18
26
34
3
11
21
29
37
6
14
22
30
38
7
15
23
31
0
8
16
24
32
1
9
17
25
33
2
10
18
26
34
3
5
13
21
29
37
6
14
22
30
38
7
15
23
31
0
8
16
24
32
1
9
17
25
33
2
10
36
5
13
21
29
37
6
14
22
30
38
7
15
23
31
0
8
16
24
32
1
9
17
20
28
36
5
13
21
29
37
6
14
22
30
38
7
15
23
31
0
8
16
12
20
28
36
5
13
21
29
37
6
14
22
30
38
7
15
23
35
4
12
20
28
36
5
13
21
29
37
6
14
22
27
35
4
12
20
28
36
5
13
21
29
11
19
27
35
4
12
20
28
3
11
19
27
35
26
34


ViewTalkEditLumatone mappings 
36edo37edo38edoLumatone mapping for 39edo40edo41edo42edo