User:Xenllium/Xenllium's circulating scales

From Xenharmonic Wiki
Jump to navigation Jump to search

Below are listed circulating scales introduced by Xenllium.

Xentwelve

Xentwelve is a 12-tone circulating scale based on 12 equal temperament. In summary, it is close to 1/3-comma meantone in the natural keys and Pythagorean tuning in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio 3/2), three 1/3-comma meantone fifths (at D–A, G–D and A–E), and one narrow schismic fifth (at G♯–D♯ (A♭–E♭), frequency ratio 16384/10935). It derives two major thirds exact 5/4 (at C–E and G–B) and one minor third exact 6/5 (at E–G), with a pure major chord (at C–E–G) and a pure minor chord (at E–G–B).

! xentwelve_a.scl
!
Xentwelve, Xenllium's 12-tone circulating scale, Central A
 12
!
 104.56252207087
 196.74123853187
 308.47252380165
 400.65124026264
 505.21376233352
 602.60752120549
 694.78623766648
 806.51752293626
 898.69623939726
 1010.42752466704
 1102.60624112803
 1200.00000000000
Sizes and occurrences of fifth and fourth
Fifth (7-step) Fourth (5-step)
Occurrences Ratio Cents Error
from 3/2
Occurrences Ratio Cents Error
from 4/3
D–A
G–D
A–E
[math]\displaystyle{ \sqrt[3]{10/3} }[/math] 694.78624 −7.16876 D–G
E–A
A–D
[math]\displaystyle{ \sqrt[3]{12/5} }[/math] 505.21376 +7.16876
G♯–D♯
(A♭–E♭)
[math]\displaystyle{ 16384/10935 }[/math] 700.00128 −1.95372 D♯–G♯
(E♭–A♭)
[math]\displaystyle{ 10935/8192 }[/math] 499.99872 +1.95372
C–G
C♯–G♯
E♭–B♭
E–B
F–C
F♯–C♯
B♭–F
B–F♯
[math]\displaystyle{ 3/2 }[/math] 701.95500 +0.00000 C–F
C♯–F♯
F–B♭
F♯–B
G–C
G♯–C♯
B♭–E♭
B–E
[math]\displaystyle{ 4/3 }[/math] 498.04500 +0.00000


Sizes and occurrences of major third and minor third
Major third (4-step) Minor third (3-step)
Occurrences Ratio Cents Error
from 5/4
Occurrences Ratio Cents Error
from 6/5
C–E
G–B
[math]\displaystyle{ 5/4 }[/math] 386.31371 +0.00000 C–E♭
C♯–E
G–B♭
G♯–B
[math]\displaystyle{ 32/27 }[/math] 294.13500 −21.50629
D–F♯
F–A
[math]\displaystyle{ \sqrt[3]{(45/32)^{2}} }[/math] 393.48248 +7.16876
A–C♯
B♭–D
[math]\displaystyle{ \sqrt[3]{32805/16384} }[/math] 400.65124 +14.33753 E♭–G♭
F–A♭
B♭–D♭
[math]\displaystyle{ 1215/1024 }[/math] 296.08872 −19.55257
D♭–F
G♭–B♭
A♭–C
B–D♯
[math]\displaystyle{ 512/405 }[/math] 405.86628 +19.55257
D–F
F♯–A
[math]\displaystyle{ \sqrt[3]{2048/1215} }[/math] 301.30376 −14.33753
A–C
B–D
[math]\displaystyle{ \sqrt[3]{128/75} }[/math] 308.47252 −7.16876
E♭–G
E–G♯
[math]\displaystyle{ 81/64 }[/math] 407.82000 +21.50629
E–G [math]\displaystyle{ 6/5 }[/math] 315.64129 +0.00000


Sizes and occurrences of whole tone and semitone
Whole tone Semitone
Occurrences Ratio Cents Occurrences Ratio Cents
D–E
G–A
[math]\displaystyle{ \sqrt[3]{25/18} }[/math] 189.57248 C–D♭
D♯–E
F–G♭
G–A♭
A♯–B
[math]\displaystyle{ 135/128 }[/math] 92.17872
C–D
A–B
[math]\displaystyle{ \sqrt[3]{45/32} }[/math] 196.74124
D♭–E♭
A♭–B♭
[math]\displaystyle{ 4096/3645 }[/math] 201.95628
D–E♭
G♯–A
[math]\displaystyle{ \sqrt[3]{1048576/885735} }[/math] 97.39376
E♭–F
E–F♯
F–G
F♯–G♯
B♭–C
B–C♯
[math]\displaystyle{ 9/8 }[/math] 203.91000
C♯–D
A–B♭
[math]\displaystyle{ \sqrt[3]{65536/54675} }[/math] 104.56252
E–F
F♯–G
B–C
[math]\displaystyle{ 16/15 }[/math] 111.73129