60th-octave temperaments: Difference between revisions
creating the page |
category |
||
Line 12: | Line 12: | ||
Optimal tuning (CTE): ~3/2 = 701.948 | Optimal tuning (CTE): ~3/2 = 701.948 | ||
Vals: {{EDOs|600e, 1860, 2460, 3060de, 3720de, 4320, 4920, 6180de, 6780, 7380e, }} | |||
=== 17-limit === | === 17-limit === | ||
Line 46: | Line 48: | ||
Optimal tuning (CTE): ~216/175 = 364.387 | Optimal tuning (CTE): ~216/175 = 364.387 | ||
Vals: {{EDOs|540, 1380, 1920, 2460, 3000, 3840, 4380, 4920, 6300, 6840e}} | |||
===Neodymium magnet=== | ===Neodymium magnet=== | ||
Line 85: | Line 89: | ||
Optimal tuning (CTE): ~216/175 = 364.385 | Optimal tuning (CTE): ~216/175 = 364.385 | ||
[[Category:60edo]] | |||
[[Category:Temperament collections]] | |||
[[Category:Rank 2]] |
Revision as of 22:52, 8 December 2022
60edo is a highly composite EDO, and some its multiples are notable for their consistency limits, such as 2460edo, which is a zeta edo.
Minutes
Defined as the 2460 & 4320 temperament, starting with the 13-limit. Named "minutes" for period-60, since there's 60 minutes in an hour. In light of 12 being a divisor of 60, minutes tempers out the Kirnberger's atom, and in the limits below 13, it's a contorted atomic temperament.
Subgroup: 2.3.5.7.11.13
Comma list: 9801/9800, 250047/250000, 371293/371250, 184549376/184528125
Mapping: [⟨60 60 385 730 1085 573], ⟨0 1 7 -16 -25 -10]]
Mapping generators: ~2704/2673, ~3/2
Optimal tuning (CTE): ~3/2 = 701.948
Vals: 600e, 1860, 2460, 3060de, 3720de, 4320, 4920, 6180de, 6780, 7380e,
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 9801/9800, 12376/12375, 28561/28560, 250047/250000, 253755392/253746675
Mapping: [⟨60 60 385 730 1085 573 877], ⟨0 1 7 -16 -25 -10 -18]]
Mapping generators: ~3520/3213, ~3/2
Optimal tuning (CTE): ~3/2 = 701.948
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 9801/9800, 12376/12375, 27456/27455, 250047/250000, 401408/401375, 1549184/1549125
Mapping: [⟨60 60 385 730 1085 573 877 -61], ⟨0 1 7 -16 -25 -10 -18 9]]
Mapping generators: ~3520/3213, ~3/2
Optimal tuning (CTE): ~3/2 = 701.948
Neodymium
Starts with the 17-limit since it is contorted in 13-limit and below, can be expressed as as 1920 & 4380 or 1920 & 2460.
Subgroup: 2.3.5.7.11.13.17
Comma list: 9801/9800, 123201/123200, 250047/250000, 31213/31212, 1990656/1990625
Mapping: [⟨60 4 30 132 244 386 391], ⟨0 5 6 2 -2 -9 -8]
Mapping generators: ~612/605, ~216/175
Optimal tuning (CTE): ~216/175 = 364.387
Vals: 540, 1380, 1920, 2460, 3000, 3840, 4380, 4920, 6300, 6840e
Neodymium magnet
Defined just as neodymium in 1920 & 4380, except adds a mapping for 29 and 43 via the fact that 87/86 is very close to 1/60th of the octave. Comma which closes a stack of 60 87/86's at the octave, is named magnetisma by Eliora, and thus the extension is called "neodymium magnet". Defined starting with 2.3.5.29.43 all the way into the 2.3.5.7.11.13.17.19.23.29.43 subgroup, and unlike plain neodymium, addition of .29.43 harmonics saves it from contorsion.
Subgroup: 2.3.5.29.43
Comma list: 46235367/46225000, [-3 13 -5 1 -2⟩, [29 20 -35 2 2⟩
Sval mapping: ⟨60 4 30 -164 -221], ⟨0 5 6 25 30]
Sval mapping generators: ~87/86, ~7533637632/6103515625
Optimal tuning (CTE): ~7533637632/6103515625 = 364.385
Vals: 540jn, 1380jn, 1920, 2460, 3000jjnn, 3840jn, 4920jn 4380, 6300, 6840
2.3.5.7.29.43 subgroup
Subgroup: 2.3.5.7.29.43
Comma list: 250047/250000, 6890625/6889472, 634230/634207, 104487018125/104485552128
Sval mapping: ⟨60 4 30 132 -164 -221], ⟨0 5 6 2 25 30]
Sval mapping generators: ~87/86, ~216/175
Optimal tuning (CTE): ~216/175 = 364.385
2.3.5.7.11.29.43 subgroup
Subgroup: 2.3.5.7.11.29.43
Comma list: 7425/7424, 9801/9800, 250047/250000, 2278125/2277968, 10320758525/10319560704
Sval mapping: ⟨60 4 30 132 244 -164 -221], ⟨0 5 6 2 -2 25 30]
Sval mapping generators: ~87/86, ~216/175
Optimal tuning (CTE): ~216/175 = 364.385