1178edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 category edits (talk | contribs)
m Categories
+prime error table
Line 1: Line 1:
The '''1178 equal tuning''' divides the octave into 1178 parts of 1.0187 cents each. It is a very strong 19-limit system, and is a [[The_Riemann_Zeta_Function_and_Tuning#Zeta EDO lists|zeta peak, integral and gap edo]]. It is also distinctly consistent through to the 21 odd limit, and is the first edo past [[742edo|742]] with a lower 19-limit [[Tenney-Euclidean_temperament_measures#TE simple badness|relative error]]. It is also notable for being divisible by both 19 and 31. A basis for its 19-limit commas is 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4375/4374, 4914/4913 and 5985/5984.
The '''1178 equal tuning''' divides the octave into 1178 parts of 1.0187 cents each. It is a very strong 19-limit system, and is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak, integral and gap edo]]. It is also distinctly [[consistent]] through to the 21-odd-limit, and is the first edo past [[742edo|742]] with a lower 19-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]]. It is also notable for being divisible by both 19 and 31. A basis for its 19-limit commas is 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4375/4374, 4914/4913 and 5985/5984.  
 
=== Prime harmonics ===
{{Harmonics in equal|1178|columns=11}}


[[Category:Equal divisions of the octave|####]] <!-- 4-digit number -->
[[Category:Equal divisions of the octave|####]] <!-- 4-digit number -->

Revision as of 12:04, 27 September 2022

The 1178 equal tuning divides the octave into 1178 parts of 1.0187 cents each. It is a very strong 19-limit system, and is a zeta peak, integral and gap edo. It is also distinctly consistent through to the 21-odd-limit, and is the first edo past 742 with a lower 19-limit relative error. It is also notable for being divisible by both 19 and 31. A basis for its 19-limit commas is 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4375/4374, 4914/4913 and 5985/5984.

Prime harmonics

Approximation of prime harmonics in 1178edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.087 -0.236 -0.065 -0.214 -0.120 -0.032 -0.060 +0.249 +0.304 -0.044
Relative (%) +0.0 -8.6 -23.1 -6.4 -21.0 -11.8 -3.1 -5.9 +24.4 +29.8 -4.3
Steps
(reduced)
1178
(0)
1867
(689)
2735
(379)
3307
(951)
4075
(541)
4359
(825)
4815
(103)
5004
(292)
5329
(617)
5723
(1011)
5836
(1124)