User:Moremajorthanmajor/7L 4s (11/4-equivalent): Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Fredg999 (talk | contribs)
m Fredg999 moved page 7L 4s (11/4-equivalent) to User:Moremajorthanmajor/7L 4s (11/4-equivalent): Moved along with the other similar pages (for similar reasons)
Inthar (talk | contribs)
No edit summary
Line 1: Line 1:
{{Infobox MOS
{{Infobox MOS
|Periods=1|nLargeSteps=7|nSmallSteps=4|Equalized=3|Paucitonic=2|Pattern=LLsLLsLLsLs|Equave=11/4}}'''7L 4s<11\4>''' has a generator of a narrow wolf to perfect fourth of 477.632 (3/11ed11\4) to 500.377 (2/7ed11\4) cents. Insofar as it may be said to be a Reformed mode, it is an authentic Locrian mode.
|Periods=1|nLargeSteps=7|nSmallSteps=4|Equalized=3|Collapsed=2|Pattern=LLsLLsLLsLs|Equave=11/4}}'''7L 4s<11\4>''' has a generator of a narrow wolf to perfect fourth of 477.632 (3/11ed11\4) to 500.377 (2/7ed11\4) cents. Insofar as it may be said to be a Reformed mode, it is an authentic Locrian mode.
==Scale tree==
==Scale tree==
{| class="wikitable center-all"
{| class="wikitable center-all"

Revision as of 10:09, 17 August 2022

Lua error in Module:MOS at line 46: attempt to index local 'equave' (a nil value).7L 4s<11\4> has a generator of a narrow wolf to perfect fourth of 477.632 (3/11ed11\4) to 500.377 (2/7ed11\4) cents. Insofar as it may be said to be a Reformed mode, it is an authentic Locrian mode.

Scale tree

Generator Cents[1] ed3\2[1] L s L/s Comments
g 3L g 3L
3\11 514¢17’9” 514¢17’9” 490.90 490.90 1 1 1.000
17\62 510 540 493r¢32’54” 522r¢34’50” 6 5 1.200
14\51 509.09 545.45 494r¢7’4” 529r¢24’42” 5 4 1.250
25\91 508¢28’28” 549¢9’9” 494r¢30’20” 534r¢3’57” 9 7 1.286
11\40 507¢41’32” 553¢50’46” 495 540 4 3 1.333
30\109 507¢2’32” 557¢44’47” 495r¢24’46” 544r¢57’15” 11 8 1.375
19\69 506.6 560 495r¢39’8” 547r49’34” 7 5 1.400
27\98 506.25 562.5 495r¢55’6” 551r¢1’13” 10 7 1.428
8\29 505¢15’47” 568¢25’16” 496r¢33’6” 558¢37’14” 3 2 1.500 L/s = 3/2
29\105 504¢20’52” 573¢54’47” 497r¢8’34” 565r¢42’51” 11 7 1.571
21\76 504 576 497r¢22’6” 568¢25’16” 8 5 1.600
34\123 503.703 577.7 497r¢33’40” 570r¢43’54” 13 8 1.625 Unnamed golden tuning
13\47 503¢13’33” 580¢38’43” 497¢49’47” 574r¢28’5” 5 3 1.667
31\112 502.702 583.783 498r¢12’51” 578r¢34’17” 12 7 1.714
18\65 502¢19’32” 586¢2’47” 498r¢27’42” 581r¢32’18” 7 4 1.750
23\83 501.81 589.09 498r¢47’43” 585r¢33’15” 9 5 1.800
28\101 501¢29’35” 591¢3’23” 499r¢36’ 588r¢7’8” 11 6 1.833
5\18 500 600 500 600 2 1 2.000
27\97 498¢47’43” 609¢13’51” 501r¢1’51” 612r¢22’16” 11 5 2.200
22\79 498¢6’48” 611¢19’15” 501¢15’57” 615r¢11’24” 9 4 2.250
17\61 497¢33’40” 614¢38’3” 501r¢38’22” 619r¢40’20” 7 3 2.333
29\104 497¢8’34” 617¢8’34” 501r¢55’23” 623r¢4’37” 12 5 2.400
12\43 496¢33’6” 620¢41’23” 502r¢19’32” 627r¢54’25” 5 2 2.500
31\111 496 624 502.702 632.432 13 5 2.600 Unnamed golden tuning
19\68 495¢39’8” 626¢5’13” 502r¢56’28” 635r¢17’39” 8 3 2.667
26\93 495¢14’17” 628¢34’17” 503r¢13’33” 638r¢42’35” 11 4 2.750
7\25 494¢7’4” 635¢17’39” 504 648 3 1 3.000 L/s = 3/1
30\107 493¢9’2” 641¢5’45” 504r¢40’22” 656r¢1’41” 13 4 3.250
23\82 492¢51’26” 642¢51’26” 504r¢52’41” 658¢32’12” 10 3 3.333
16\57 492¢18’28” 646¢50’46” 505r¢15’47” 663r¢9’28” 7 2 3.500
25\89 491¢48’12” 649¢10’49” 505r¢37’5” 667r¢24’57” 11 3 3.667
9\32 490.90 654.54 506.25 675 4 1 4.000
20\71 489¢47’45” 661¢13’28” 507r¢2’32” 684r¢30’25” 9 2 4.500
11\39 488.8 666.6 507r¢41’32” 692r¢30’25” 5 1 5.000
13\46 487.5 675 508r¢41’44” 704r¢20’52” 6 1 6.000
2\7 480 720 720 1080 1 0 → inf
  1. 1.0 1.1 Fractions which repeat in more than 3 digits in sexagesimal