User:Moremajorthanmajor/3L 1s (perfect fifth-equivalent): Difference between revisions
No edit summary |
mNo edit summary |
||
Line 18: | Line 18: | ||
}}'''3L 1s<3/2>''', is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). | }}'''3L 1s<3/2>''', is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 1s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). | ||
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents). | The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents). | ||
Line 325: | Line 325: | ||
|Bbb | |Bbb | ||
| | |3b, 3c | ||
|10\15 | |10\15 | ||
Line 357: | Line 357: | ||
|'''Bb''' | |'''Bb''' | ||
|''' | |'''3''' | ||
|'''11\15''' | |'''11\15''' | ||
Line 393: | Line 393: | ||
|B | |B | ||
|3 | |3# | ||
|12\15 | |12\15 | ||
Line 429: | Line 429: | ||
|B# | |B# | ||
| | |3x | ||
|13\15 | |13\15 | ||
Line 462: | Line 462: | ||
|Dob, Solb | |Dob, Solb | ||
|Hb | |Hb | ||
| 4b, 4c | |||
|4b, 4c | |||
|14\15 | |14\15 | ||
646.153… | 646.153… | ||
|16\18 | |16\18 | ||
619.354… | 619.354… | ||
|6\7 | |6\7 | ||
600 | 600 | ||
|14\17 | |14\17 | ||
579.310… | 579.310… | ||
|8\10 | |8\10 | ||
564.705… | 564.705… | ||
|10\13 | |10\13 | ||
Line 556: | Line 535: | ||
757.894… | 757.894… | ||
|20\18 | | 20\18 | ||
774.193… | 774.193… | ||
| rowspan="2" |8\8 | | rowspan="2" | 8\8 | ||
800 | 800 | ||
Line 572: | Line 551: | ||
847.058… | 847.058… | ||
|16\13 | | 16\13 | ||
872.{{Overline|72}} | 872.{{Overline|72}} | ||
Line 592: | Line 571: | ||
821.052… | 821.052… | ||
|21\18 | | 21\18 | ||
812.903… | 812.903… | ||
|19\17 | | 19\17 | ||
786.206… | 786.206… | ||
|11\10 | | 11\10 | ||
776.470… | 776.470… | ||
|14\13 | | 14\13 | ||
763.{{Overline|63}} | 763.{{Overline|63}} | ||
Line 646: | Line 625: | ||
|- | |- | ||
|Re#, La# | | Re#, La# | ||
|C# | |C# | ||
|5# | | 5# | ||
|20\15 | |20\15 | ||
Line 672: | Line 651: | ||
1034.482… | 1034.482… | ||
|15\10 | | 15\10 | ||
1058.823… | 1058.823… | ||
Line 696: | Line 675: | ||
1010.526… | 1010.526… | ||
|26\18 | | 26\18 | ||
1006.451… | 1006.451… | ||
Line 728: | Line 707: | ||
1073.684… | 1073.684… | ||
|28\18 | | 28\18 | ||
1083.870… | 1083.870… | ||
Line 736: | Line 715: | ||
1100 | 1100 | ||
|27\17 | | 27\17 | ||
1117.241… | 1117.241… | ||
|16\10 | | 16\10 | ||
1129.411… | 1129.411… | ||
|21\9 | | 21\9 | ||
1145.{{Overline|45}} | 1145.{{Overline|45}} | ||
Line 752: | Line 731: | ||
|Mi#, Si# | |Mi#, Si# | ||
|D# | | D# | ||
|6# | |6# | ||
|24\15 | | 24\15 | ||
1107.692… | 1107.692… | ||
| rowspan="2" |18\11 | | rowspan="2" | 18\11 | ||
1136.842… | 1136.842… | ||
Line 768: | Line 747: | ||
1161.290… | 1161.290… | ||
|12\7 | | 12\7 | ||
1200 | 1200 | ||
Line 790: | Line 769: | ||
|Ebb | |Ebb | ||
| | |7b, 7c | ||
|25\15 | |25\15 | ||
Line 800: | Line 779: | ||
1122.580… | 1122.580… | ||
|11\7 | | 11\7 | ||
1100 | 1100 | ||
Line 822: | Line 801: | ||
|'''Eb''' | |'''Eb''' | ||
|''' | |'''7''' | ||
|'''26\15''' | |'''26\15''' | ||
Line 856: | Line 835: | ||
|Fa#, Do# | |Fa#, Do# | ||
|E | | E | ||
|7 | |7# | ||
|27\15 | |27\15 | ||
Line 868: | Line 847: | ||
1263.157… | 1263.157… | ||
|33\18 | | 33\18 | ||
1277.419… | 1277.419… | ||
Line 894: | Line 873: | ||
|E# | |E# | ||
| | |7x | ||
|28\15 | |28\15 | ||
Line 908: | Line 887: | ||
1354.838… | 1354.838… | ||
|14\7 | | 14\7 | ||
1400 | 1400 | ||
Line 952: | Line 931: | ||
1270.588… | 1270.588… | ||
|23\18 | | 23\18 | ||
1254.{{Overline|54}} | 1254.{{Overline|54}} | ||
Line 962: | Line 941: | ||
!F | !F | ||
!8, F | ! 8, F | ||
!30\15 | ! 30\15 | ||
1384.615… | 1384.615… | ||
!22\11 | ! 22\11 | ||
1389.473… | 1389.473… | ||
Line 980: | Line 959: | ||
1400 | 1400 | ||
!34\17 | ! 34\17 | ||
1406.896… | 1406.896… | ||
!20\10 | ! 20\10 | ||
1411.764… | 1411.764… | ||
Line 1,004: | Line 983: | ||
1430.769… | 1430.769… | ||
|23\11 | | 23\11 | ||
1452.631… | 1452.631… | ||
Line 1,016: | Line 995: | ||
1500 | 1500 | ||
|37\17 | | 37\17 | ||
1531.034… | 1531.034… | ||
|22\10 | | 22\10 | ||
1552.941… | 1552.941… | ||
Line 1,030: | Line 1,009: | ||
|- | |- | ||
|Reb, Lab | | Reb, Lab | ||
|Gb | |Gb | ||
Line 1,044: | Line 1,023: | ||
1515.789… | 1515.789… | ||
|39\18 | | 39\18 | ||
1509.677… | 1509.677… | ||
Line 1,112: | Line 1,091: | ||
1642.105… | 1642.105… | ||
|43\18 | | 43\18 | ||
1664.516… | 1664.516… | ||
| rowspan="2" |17\7 | | rowspan="2" | 17\7 | ||
1700 | 1700 | ||
Line 1,204: | Line 1,183: | ||
|Mi#, Si# | |Mi#, Si# | ||
|A# | | A# | ||
|X#, A# | |X#, A# | ||
Line 1,232: | Line 1,211: | ||
1976.470… | 1976.470… | ||
|37\13 | | 37\13 | ||
2018.{{Overline|18}} | 2018.{{Overline|18}} | ||
Line 1,252: | Line 1,231: | ||
1819.354… | 1819.354… | ||
|18\7 | | 18\7 | ||
1800 | 1800 | ||
Line 1,264: | Line 1,243: | ||
1764.705… | 1764.705… | ||
|32\13 | | 32\13 | ||
1745.{{Overline|45}} | 1745.{{Overline|45}} | ||
Line 1,308: | Line 1,287: | ||
|Fa#, Do# | |Fa#, Do# | ||
|B | | B | ||
|E, C | |E, C | ||
Line 1,320: | Line 1,299: | ||
1957.894… | 1957.894… | ||
|51\18 | | 51\18 | ||
1974.193… | 1974.193… | ||
Line 1,446: | Line 1,425: | ||
|} | |} | ||
{| class="wikitable" | |||
{| class="wikitable" | |||
|+Relative cents | |+Relative cents | ||
! colspan="3" | Notation | |||
! colspan="3" |Notation | |||
!Supersoft | !Supersoft | ||
!Soft | !Soft | ||
!Semisoft | !Semisoft | ||
!Basic | !Basic | ||
!Semihard | !Semihard | ||
!Hard | !Hard | ||
!Superhard | !Superhard | ||
|- | |- | ||
! Diatonic | |||
!Napoli | |||
!Diatonic | ! Bijou | ||
!~15edf | |||
!Napoli | |||
!Bijou | |||
!~15edf | |||
!~11edf | !~11edf | ||
!~18edf | !~18edf | ||
!~7edf | !~7edf | ||
!~17edf | !~17edf | ||
!~10edf | !~10edf | ||
!~13edf | !~13edf | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|F# | |F# | ||
|0#, D# | |0#, D# | ||
|1\15 | |1\15 | ||
''46.{{Overline|6}}'' | ''46.{{Overline|6}}'' | ||
|1\11 | |1\11 | ||
''63.{{Overline|63}}'' | ''63.{{Overline|63}}'' | ||
|2\18 | |2\18 | ||
''77.7̄'' | ''77.7̄'' | ||
| rowspan="2" |1\7 | | rowspan="2" |1\7 | ||
''100'' | ''100'' | ||
| 3\17 | |||
''123.529…'' | ''123.529…'' | ||
| 2\10 | |||
''140'' | ''140'' | ||
|3\13 | |3\13 | ||
''161.538…'' | ''161.538…'' | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
| Gb | |||
|Gb | |||
|1b, 1c | |1b, 1c | ||
|3\15 | |3\15 | ||
''140'' | ''140'' | ||
|2\11 | |2\11 | ||
''127.{{Overline|27}}'' | ''127.{{Overline|27}}'' | ||
|3\18 | |3\18 | ||
''116.{{Overline|6}}'' | ''116.{{Overline|6}}'' | ||
| 2\17 | |||
''82.352…'' | ''82.352…'' | ||
|1\10 | |1\10 | ||
''70'' | ''70'' | ||
|1\13 | |1\13 | ||
''53.846…'' | ''53.846…'' | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''G''' | |'''G''' | ||
|'''1''' | |'''1''' | ||
|'''4\15''' | |'''4\15''' | ||
'''''186.{{Overline|6}}''''' | '''''186.{{Overline|6}}''''' | ||
|'''3\11''' | |'''3\11''' | ||
'''''190.{{Overline|90}}''''' | '''''190.{{Overline|90}}''''' | ||
|'''5\18''' | |'''5\18''' | ||
'''''194.{{Overline|4}}''''' | '''''194.{{Overline|4}}''''' | ||
|'''2\7''' | |'''2\7''' | ||
'''''200''''' | '''''200''''' | ||
|'''5\17''' | |'''5\17''' | ||
'''''205.882…''''' | '''''205.882…''''' | ||
|'''3\10''' | |'''3\10''' | ||
'''''210''''' | '''''210''''' | ||
|'''4\13''' | |'''4\13''' | ||
'''''215.384…''''' | '''''215.384…''''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
| G# | |||
| 1# | |||
|G# | |||
|1# | |||
|5\15 | |5\15 | ||
''233.{{Overline|3}}'' | ''233.{{Overline|3}}'' | ||
|4\11 | |4\11 | ||
''254.{{Overline|54}}'' | ''254.{{Overline|54}}'' | ||
|7\18 | |7\18 | ||
''272.2̄'' | ''272.2̄'' | ||
| rowspan="2" |3\7 | | rowspan="2" |3\7 | ||
''300'' | ''300'' | ||
|8\17 | |8\17 | ||
''329.411…'' | ''329.411…'' | ||
|5\10 | |5\10 | ||
''350'' | ''350'' | ||
|7\13 | |7\13 | ||
''376.923…'' | ''376.923…'' | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
|Ab | |Ab | ||
|2b, 2c | |2b, 2c | ||
|7\15 | |7\15 | ||
''326.{{Overline|6}}'' | ''326.{{Overline|6}}'' | ||
|5\11 | |5\11 | ||
''318.{{Overline|18}}'' | ''318.{{Overline|18}}'' | ||
| 8\18 | |||
''311.{{Overline|1}}'' | ''311.{{Overline|1}}'' | ||
|7\17 | |7\17 | ||
''288.235…'' | ''288.235…'' | ||
| 4\10 | |||
''280'' | ''280'' | ||
|5\13 | |5\13 | ||
''269.230…'' | ''269.230…'' | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|A | |A | ||
| 2 | |||
|2 | |||
|8\15 | |8\15 | ||
''373.{{Overline|3}}'' | ''373.{{Overline|3}}'' | ||
|6\11 | |6\11 | ||
''381.{{Overline|81}}'' | ''381.{{Overline|81}}'' | ||
|10\18 | |10\18 | ||
''388.{{Overline|8}}'' | ''388.{{Overline|8}}'' | ||
|4\7 | |4\7 | ||
''400'' | ''400'' | ||
|10\17 | |10\17 | ||
''411.764…'' | ''411.764…'' | ||
|6\10 | |6\10 | ||
''420'' | ''420'' | ||
|8\13 | |8\13 | ||
''430.769…'' | ''430.769…'' | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
|A# | |A# | ||
|2# | |2# | ||
|9\15 | |9\15 | ||
''420'' | ''420'' | ||
| rowspan="2" |7\11 | | rowspan="2" |7\11 | ||
''445.{{Overline|45}}'' | ''445.{{Overline|45}}'' | ||
|12\18 | |||
''466.{{Overline|6}}'' | ''466.{{Overline|6}}'' | ||
|5\7 | |5\7 | ||
''500'' | ''500'' | ||
|13\17 | |13\17 | ||
''535.294…'' | ''535.294…'' | ||
|8\10 | |8\10 | ||
''560'' | ''560'' | ||
|11\13 | |11\13 | ||
''592.307…'' | ''592.307…'' | ||
|- | |- | ||
|Fab, Dob | |Fab, Dob | ||
|Bbb | |Bbb | ||
|3b, 3c | |||
| | |||
|10\15 | |10\15 | ||
''466.{{Overline|6}}'' | ''466.{{Overline|6}}'' | ||
|11\18 | |11\18 | ||
''427.{{Overline|7}}'' | ''427.{{Overline|7}}'' | ||
|4\7 | |4\7 | ||
''400'' | ''400'' | ||
|9\17 | |9\17 | ||
''370.588…'' | ''370.588…'' | ||
|5\10 | |5\10 | ||
''350'' | ''350'' | ||
|6\13 | |6\13 | ||
''323.076.…'' | ''323.076.…'' | ||
|- | |||
|- | |||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Bb''' | |'''Bb''' | ||
|'''3''' | |||
|''' | |||
|'''11\15''' | |'''11\15''' | ||
'''''513.{{Overline|3}}''''' | '''''513.{{Overline|3}}''''' | ||
|'''8\11''' | |'''8\11''' | ||
'''''509.{{Overline|09}}''''' | '''''509.{{Overline|09}}''''' | ||
|'''13\18''' | |'''13\18''' | ||
'''''505.{{Overline|5}}''''' | '''''505.{{Overline|5}}''''' | ||
|'''5\7''' | |'''5\7''' | ||
'''''500''''' | '''''500''''' | ||
|'''12\17''' | |'''12\17''' | ||
'''''494.117…''''' | '''''494.117…''''' | ||
|'''7\10''' | |'''7\10''' | ||
'''''490''''' | '''''490''''' | ||
|'''9\13''' | |'''9\13''' | ||
'''''484.615…''''' | '''''484.615…''''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
| B | |||
|3# | |||
|12\15 | |||
''560'' | |||
| | |9\11 | ||
''572.{{Overline|72}}'' | |||
| | | 15\18 | ||
''583.{{Overline|3}}'' | ''583.{{Overline|3}}'' | ||
|6\7 | |6\7 | ||
''600'' | ''600'' | ||
|15\17 | |15\17 | ||
''617.647…'' | ''617.647…'' | ||
|9\10 | |9\10 | ||
''630'' | ''630'' | ||
|12\13 | |12\13 | ||
''646.153…'' | ''646.153…'' | ||
|- | |- | ||
| Fax, Dox | |||
|Fax, Dox | |||
|B# | |B# | ||
|3x | |||
| | |||
|13\15 | |13\15 | ||
''606. {{Overline|6}}'' | ''606. {{Overline|6}}'' | ||
| rowspan="2" |10\11 | | rowspan="2" |10\11 | ||
''636.{{Overline|36}}'' | ''636.{{Overline|36}}'' | ||
|17\18 | |17\18 | ||
''661.{{Overline|1}}'' | ''661.{{Overline|1}}'' | ||
|7\7 | |7\7 | ||
''700'' | ''700'' | ||
|18\17 | |18\17 | ||
''741.176…'' | ''741.176…'' | ||
|11\10 | |11\10 | ||
''770'' | ''770'' | ||
|15\13 | |15\13 | ||
''807.692…'' | ''807.692…'' | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Hb | |Hb | ||
|4b, 4c | |4b, 4c | ||
|14\15 | |14\15 | ||
''653.{{Overline|3}}'' | ''653.{{Overline|3}}'' | ||
|16\18 | |16\18 | ||
''622.{{Overline|2}}'' | ''622.{{Overline|2}}'' | ||
|6\7 | |6\7 | ||
''600'' | ''600'' | ||
| 14\17 | |||
''576.470…'' | ''576.470…'' | ||
| 8\10 | |||
|8\10 | |||
''560'' | ''560'' | ||
|10\13 | |10\13 | ||
''538.461…'' | ''538.461…'' | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!H | !H | ||
!4 | !4 | ||
! colspan="7" |''700'' | ! colspan="7" |''700'' | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|Η# | |Η# | ||
|4# | |4# | ||
|16\15 | |16\15 | ||
''746.{{Overline|6}}'' | ''746.{{Overline|6}}'' | ||
|12\11 | |12\11 | ||
''763.{{Overline|63}}'' | ''763.{{Overline|63}}'' | ||
|20\18 | |20\18 | ||
''777.{{Overline|7}}'' | ''777.{{Overline|7}}'' | ||
| rowspan="2" |8\7 | | rowspan="2" |8\7 | ||
''800'' | ''800'' | ||
|20\17 | |20\17 | ||
''823.529…'' | ''823.529…'' | ||
|12\10 | |12\10 | ||
''840'' | ''840'' | ||
|16\13 | |16\13 | ||
''861.538…'' | ''861.538…'' | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
|Cb | |Cb | ||
|5b, 5c | |5b, 5c | ||
|18\15 | |18\15 | ||
''840'' | ''840'' | ||
|13\11 | |13\11 | ||
''827.{{Overline|27}}'' | ''827.{{Overline|27}}'' | ||
|21\18 | |21\18 | ||
''816.{{Overline|6}}'' | ''816.{{Overline|6}}'' | ||
| 19\17 | |||
''782.352…'' | ''782.352…'' | ||
|11\10 | |11\10 | ||
''770'' | ''770'' | ||
|14\13 | |14\13 | ||
''753.846…'' | ''753.846…'' | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''C''' | |'''C''' | ||
|'''5''' | |'''5''' | ||
|'''19\15''' | |'''19\15''' | ||
'''''886.{{Overline|6}}''''' | '''''886.{{Overline|6}}''''' | ||
|'''14\11''' | |'''14\11''' | ||
'''''890.{{Overline|90}}''''' | '''''890.{{Overline|90}}''''' | ||
|'''23\18''' | |'''23\18''' | ||
'''''894.{{Overline|4}}''''' | '''''894.{{Overline|4}}''''' | ||
|'''9\7''' | |'''9\7''' | ||
'''''900''''' | '''''900''''' | ||
|'''22\17''' | |||
'''''905.882…''''' | '''''905.882…''''' | ||
|'''13\10''' | |'''13\10''' | ||
'''''910''''' | '''''910''''' | ||
|'''17\13''' | |'''17\13''' | ||
'''''915.384…''''' | '''''915.384…''''' | ||
|- | |- | ||
| Re#, La# | |||
|Re#, La# | |||
|C# | |C# | ||
|5# | |5# | ||
|20\15 | |20\15 | ||
''933.{{Overline|3}}'' | ''933.{{Overline|3}}'' | ||
|15\11 | |15\11 | ||
''954.{{Overline|54}}'' | ''954.{{Overline|54}}'' | ||
|25\18 | |25\18 | ||
''972.{{Overline|2}}'' | ''972.{{Overline|2}}'' | ||
| rowspan="2" | 10\7 | |||
''1000'' | ''1000'' | ||
|25\17 | |25\17 | ||
''1029.411…'' | ''1029.411…'' | ||
|15\10 | |15\10 | ||
''1050'' | ''1050'' | ||
|20\13 | |20\13 | ||
''1076.923…'' | ''1076.923…'' | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
|Db | |Db | ||
|6b, 6c | |6b, 6c | ||
|22\15 | |22\15 | ||
''1026.{{Overline|6}}'' | ''1026.{{Overline|6}}'' | ||
|16\11 | |16\11 | ||
''1018.{{Overline|18}}'' | ''1018.{{Overline|18}}'' | ||
|26\18 | |26\18 | ||
''1011. {{Overline|1}}'' | ''1011. {{Overline|1}}'' | ||
|24\17 | |24\17 | ||
''988.235…'' | ''988.235…'' | ||
|14\10 | |14\10 | ||
''980'' | ''980'' | ||
|18\13 | |18\13 | ||
''969.230…'' | ''969.230…'' | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|D | |D | ||
|6 | |6 | ||
| 23\15 | |||
''1073.{{Overline|3}}'' | ''1073.{{Overline|3}}'' | ||
|17\11 | |17\11 | ||
''1081.{{Overline|81}}'' | ''1081.{{Overline|81}}'' | ||
|28\18 | |28\18 | ||
''1088.{{Overline|8}}'' | ''1088.{{Overline|8}}'' | ||
|11\7 | |||
''1100'' | ''1100'' | ||
|27\17 | |27\17 | ||
''1111.764…'' | ''1111.764…'' | ||
|16\10 | |16\10 | ||
''1120'' | ''1120'' | ||
|21\13 | |21\13 | ||
''1130.769…'' | ''1130.769…'' | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
| D# | |||
|D# | |||
|6# | |6# | ||
|24\15 | |24\15 | ||
''1120'' | ''1120'' | ||
| rowspan="2" | 18\11 | |||
''1145.{{Overline|45}}'' | ''1145.{{Overline|45}}'' | ||
|30\18 | |30\18 | ||
''1166.{{Overline|6}}'' | ''1166.{{Overline|6}}'' | ||
|12\7 | |12\7 | ||
''1200'' | ''1200'' | ||
| 30\17 | |||
''1235.294…'' | ''1235.294…'' | ||
|18\10 | |18\10 | ||
''1260'' | ''1260'' | ||
|24\13 | |24\13 | ||
''1292.307…'' | ''1292.307…'' | ||
|- | |- | ||
| Fab, Dob | |||
| Ebb | |||
|Fab, Dob | | 7b, 7c | ||
|Ebb | |||
| | |||
|25\15 | |25\15 | ||
''1166.{{Overline|6}}'' | ''1166.{{Overline|6}}'' | ||
|29\18 | |29\18 | ||
''1127.{{Overline|7}}'' | ''1127.{{Overline|7}}'' | ||
|11\7 | |11\7 | ||
''1100'' | ''1100'' | ||
|26\17 | |26\17 | ||
''1070.588…'' | ''1070.588…'' | ||
|15\10 | |15\10 | ||
''1050'' | ''1050'' | ||
|19\13 | |19\13 | ||
''1023.076…'' | ''1023.076…'' | ||
|- | |- | ||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Eb''' | |'''Eb''' | ||
|'''7''' | |||
|''' | |||
|'''26\15''' | |'''26\15''' | ||
'''''1213.{{Overline|3}}''''' | '''''1213.{{Overline|3}}''''' | ||
|'''19\11''' | |'''19\11''' | ||
'''''1209.{{Overline|09}}''''' | '''''1209.{{Overline|09}}''''' | ||
|'''31\18''' | |||
'''''1205.{{Overline|5}}''''' | '''''1205.{{Overline|5}}''''' | ||
|'''12\7''' | |'''12\7''' | ||
'''''1200''''' | '''''1200''''' | ||
|'''29\17''' | |'''29\17''' | ||
'''''1194.117…''''' | '''''1194.117…''''' | ||
|'''17\10''' | |'''17\10''' | ||
'''''1190''''' | '''''1190''''' | ||
|'''22\13''' | |'''22\13''' | ||
'''''1184.615…''''' | '''''1184.615…''''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
|E | |E | ||
|7# | |||
|7 | |||
|27\15 | |27\15 | ||
''1260'' | ''1260'' | ||
|20\11 | |20\11 | ||
''1272.{{Overline|72}}'' | ''1272.{{Overline|72}}'' | ||
| 33\18 | |||
''1283.{{Overline|3}}'' | ''1283.{{Overline|3}}'' | ||
|13\7 | |13\7 | ||
''1300'' | ''1300'' | ||
|32\17 | |32\17 | ||
''1317.647…'' | ''1317.647…'' | ||
|19\10 | |19\10 | ||
''1330'' | ''1330'' | ||
| 25\13 | |||
''1346.153…'' | ''1346.153…'' | ||
|- | |- | ||
|Fax, Dox | |Fax, Dox | ||
|E# | |E# | ||
|7x | |||
| | |||
|28\15 | |28\15 | ||
''1306.{{Overline|6}}'' | ''1306.{{Overline|6}}'' | ||
| rowspan="2" |21\11 | | rowspan="2" |21\11 | ||
''1336.{{Overline|36}}'' | ''1336.{{Overline|36}}'' | ||
|35\18 | |35\18 | ||
''1361.{{Overline|1}}'' | ''1361.{{Overline|1}}'' | ||
|14\7 | |14\7 | ||
''1400'' | ''1400'' | ||
|35\17 | |35\17 | ||
''1441.176…'' | ''1441.176…'' | ||
|21\10 | |21\10 | ||
''1470'' | ''1470'' | ||
|28\13 | |28\13 | ||
''1507.692…'' | ''1507.692…'' | ||
|- | |- | ||
|Dob, Solb | |Dob, Solb | ||
|Fb | |Fb | ||
|8b, Fc | |||
|29\15 | |||
''1333.{{Overline|3}}'' | ''1333.{{Overline|3}}'' | ||
|34\18 | |34\18 | ||
''1322.{{Overline|2}}'' | ''1322.{{Overline|2}}'' | ||
|13\7 | |13\7 | ||
''1300'' | ''1300'' | ||
|31\17 | |31\17 | ||
''1276.470…'' | ''1276.470…'' | ||
|18\10 | |18\10 | ||
''1260'' | ''1260'' | ||
|23\13 | |23\13 | ||
''1238.461…'' | ''1238.461…'' | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!F | !F | ||
!8, F | !8, F | ||
! colspan="7" |''1400'' | ! colspan="7" |''1400'' | ||
|- | |- | ||
|Do#, Sol# | |Do#, Sol# | ||
|F# | |F# | ||
|8#, F# | |8#, F# | ||
|31\15 | |31\15 | ||
''1446.{{Overline|6}}'' | ''1446.{{Overline|6}}'' | ||
|23\11 | |23\11 | ||
''1463.{{Overline|63}}'' | ''1463.{{Overline|63}}'' | ||
|38\18 | |38\18 | ||
''1477.7̄'' | ''1477.7̄'' | ||
| rowspan="2" |15\7 | | rowspan="2" |15\7 | ||
''1500'' | ''1500'' | ||
|37\17 | |37\17 | ||
''1523.529…'' | ''1523.529…'' | ||
|22\10 | |22\10 | ||
''1540'' | ''1540'' | ||
| 29\13 | |||
''1561.538…'' | ''1561.538…'' | ||
|- | |- | ||
|Reb, Lab | |Reb, Lab | ||
|Gb | |Gb | ||
| 9b, Gc | |||
|9b, Gc | |||
|33\15 | |33\15 | ||
''1540'' | ''1540'' | ||
|24\11 | |24\11 | ||
''1527.{{Overline|27}}'' | ''1527.{{Overline|27}}'' | ||
|39\18 | |39\18 | ||
''1516.{{Overline|6}}'' | ''1516.{{Overline|6}}'' | ||
| 36\17 | |||
''1482.352…'' | ''1482.352…'' | ||
|21\10 | |21\10 | ||
''1470'' | ''1470'' | ||
|27\13 | |27\13 | ||
''1453.846…'' | ''1453.846…'' | ||
|- | |- | ||
|'''Re, La''' | |'''Re, La''' | ||
|'''G''' | |'''G''' | ||
|'''9, G''' | |'''9, G''' | ||
|'''34\15''' | |'''34\15''' | ||
'''''1586.{{Overline|6}}''''' | '''''1586.{{Overline|6}}''''' | ||
|'''25\11''' | |'''25\11''' | ||
'''''1590.{{Overline|90}}''''' | '''''1590.{{Overline|90}}''''' | ||
|'''41\18''' | |'''41\18''' | ||
'''''1594.{{Overline|4}}''''' | '''''1594.{{Overline|4}}''''' | ||
|'''16\7''' | |'''16\7''' | ||
'''''1600''''' | '''''1600''''' | ||
|'''39\17''' | |'''39\17''' | ||
'''''1605.882…''''' | '''''1605.882…''''' | ||
|'''23\10''' | |'''23\10''' | ||
'''''1610''''' | '''''1610''''' | ||
|'''30\13''' | |'''30\13''' | ||
'''''1615.384…''''' | '''''1615.384…''''' | ||
|- | |- | ||
|Re#, La# | |Re#, La# | ||
|G# | |G# | ||
|9#, G# | |9#, G# | ||
|35\15 | |35\15 | ||
''1633.{{Overline|3}}'' | ''1633.{{Overline|3}}'' | ||
|26\11 | |26\11 | ||
''1654.{{Overline|54}}'' | ''1654.{{Overline|54}}'' | ||
|43\18 | |43\18 | ||
''1672.{{Overline|2}}'' | ''1672.{{Overline|2}}'' | ||
| rowspan="2" |17\7 | | rowspan="2" |17\7 | ||
''1700'' | ''1700'' | ||
|42\17 | |42\17 | ||
''1729.411…'' | ''1729.411…'' | ||
|25\10 | |25\10 | ||
''1750'' | ''1750'' | ||
|33\13 | |33\13 | ||
''1776.923…'' | ''1776.923…'' | ||
|- | |- | ||
|Mib, Sib | |Mib, Sib | ||
| Ab | |||
|Ab | |||
|Xb, Ac | |Xb, Ac | ||
|37\15 | |37\15 | ||
''1726.{{Overline|6}}'' | ''1726.{{Overline|6}}'' | ||
| 27\11 | |||
''1718.{{Overline|18}}'' | ''1718.{{Overline|18}}'' | ||
|44\18 | |44\18 | ||
''1711.{{Overline|1}}'' | ''1711.{{Overline|1}}'' | ||
|41\17 | |41\17 | ||
''1688.235…'' | ''1688.235…'' | ||
| 24\10 | |||
''1680'' | |||
''1680'' | |||
|31\13 | |31\13 | ||
''1669.230…'' | ''1669.230…'' | ||
|- | |- | ||
|Mi, Si | |Mi, Si | ||
|A | |A | ||
|X, A | |X, A | ||
|38\15 | |38\15 | ||
''1773.{{Overline|3}}'' | ''1773.{{Overline|3}}'' | ||
|28\11 | |28\11 | ||
''1781.{{Overline|81}}'' | ''1781.{{Overline|81}}'' | ||
|46\18 | |46\18 | ||
''1788.{{Overline|8}}'' | ''1788.{{Overline|8}}'' | ||
|18\7 | |18\7 | ||
''1800'' | ''1800'' | ||
| 44\17 | |||
''1811.764…'' | ''1811.764…'' | ||
|26\10 | |26\10 | ||
''1820'' | ''1820'' | ||
|34\13 | |34\13 | ||
''1830.769…'' | ''1830.769…'' | ||
|- | |- | ||
|Mi#, Si# | |Mi#, Si# | ||
|A# | |A# | ||
|X#, A# | |X#, A# | ||
|39\15 | |39\15 | ||
''1820'' | ''1820'' | ||
| rowspan="2" |29\11 | | rowspan="2" |29\11 | ||
''1845.{{Overline|45}}'' | ''1845.{{Overline|45}}'' | ||
|48\18 | |48\18 | ||
''1866.{{Overline|6}}'' | ''1866.{{Overline|6}}'' | ||
|19\7 | |19\7 | ||
''1900'' | ''1900'' | ||
|47\17 | |47\17 | ||
''1935.294…'' | ''1935.294…'' | ||
|28\10 | |28\10 | ||
''1960'' | ''1960'' | ||
| 37\13 | |||
''1992.307…'' | ''1992.307…'' | ||
|- | |- | ||
|Fab, Dob | |Fab, Dob | ||
|Bbb | |Bbb | ||
|Ebb, Ccc | |Ebb, Ccc | ||
|40\15 | |40\15 | ||
''1866.{{Overline|6}}'' | ''1866.{{Overline|6}}'' | ||
|47\18 | |47\18 | ||
''1827.{{Overline|7}}'' | ''1827.{{Overline|7}}'' | ||
|18\7 | |18\7 | ||
''1800'' | ''1800'' | ||
|43\17 | |43\17 | ||
''1770.588…'' | ''1770.588…'' | ||
|25\10 | |25\10 | ||
''1750'' | ''1750'' | ||
|32\13 | |32\13 | ||
''1723.076…'' | ''1723.076…'' | ||
|- | |- | ||
|'''Fa, Do''' | |'''Fa, Do''' | ||
|'''Bb''' | |'''Bb''' | ||
|Eb, Cc | |Eb, Cc | ||
|'''41\15''' | |'''41\15''' | ||
'''''1913.{{Overline|3}}''''' | '''''1913.{{Overline|3}}''''' | ||
|'''30\11''' | |'''30\11''' | ||
'''''1909.{{Overline|09}}''''' | '''''1909.{{Overline|09}}''''' | ||
|'''49\18''' | |'''49\18''' | ||
'''''1905.{{Overline|5}}''''' | '''''1905.{{Overline|5}}''''' | ||
|'''19\7''' | |'''19\7''' | ||
'''''1900''''' | '''''1900''''' | ||
|'''46\17''' | |'''46\17''' | ||
'''''1894.117…''''' | '''''1894.117…''''' | ||
|'''27\10''' | |'''27\10''' | ||
'''''1890''''' | '''''1890''''' | ||
|'''35\13''' | |'''35\13''' | ||
'''''1884.615…''''' | '''''1884.615…''''' | ||
|- | |- | ||
|Fa#, Do# | |Fa#, Do# | ||
|B | |B | ||
|E, C | |E, C | ||
| 42\15 | |||
''1960'' | ''1960'' | ||
|31\11 | |31\11 | ||
''1972.{{Overline|72}}'' | ''1972.{{Overline|72}}'' | ||
|51\18 | |51\18 | ||
''1983.{{Overline|3}}'' | ''1983.{{Overline|3}}'' | ||
|20\7 | |20\7 | ||
''2000'' | ''2000'' | ||
|49\17 | |49\17 | ||
''2017.647…'' | ''2017.647…'' | ||
|29\10 | |29\10 | ||
''2030'' | ''2030'' | ||
|38\13 | |38\13 | ||
''2046.153…'' | ''2046.153…'' | ||
|- | |- | ||
|Fax, Dox | |Fax, Dox | ||
|B# | |B# | ||
|Ex, Cx | |Ex, Cx | ||
|43\15 | |43\15 | ||
''2006.{{Overline|6}}'' | ''2006.{{Overline|6}}'' | ||
| rowspan="2" |32\11 | | rowspan="2" |32\11 | ||
''2036.{{Overline|36}}'' | ''2036.{{Overline|36}}'' | ||
|53\18 | |53\18 | ||
''2061. {{Overline|1}}'' | ''2061. {{Overline|1}}'' | ||
|21\7 | |21\7 | ||
''2100'' | ''2100'' | ||
|52\17 | |||
''2141.176…'' | ''2141.176…'' | ||
|31\10 | |31\10 | ||
''2170'' | ''2170'' | ||
|41\13 | |41\13 | ||
''2207.692…'' | ''2207.692…'' | ||
|- | |- | ||
| Dob, Solb | |||
|Dob, Solb | |||
|Hb | |Hb | ||
|0b, Dc | |0b, Dc | ||
|44\15 | |44\15 | ||
''2053.{{Overline|3}}'' | ''2053.{{Overline|3}}'' | ||
|52\18 | |52\18 | ||
''2022.{{Overline|2}}'' | ''2022.{{Overline|2}}'' | ||
|20\7 | |20\7 | ||
''2000'' | ''2000'' | ||
|48\17 | |48\17 | ||
''1976.470…'' | ''1976.470…'' | ||
|28\10 | |28\10 | ||
''1960'' | ''1960'' | ||
| 36\13 | |||
1938.615… | 1938.615… | ||
|- | |- | ||
!Do, Sol | !Do, Sol | ||
!H | |||
!H | |||
!0, D | !0, D | ||
! colspan="7" |2100 | ! colspan="7" |2100 | ||
|} | |} | ||
==Intervals== | ==Intervals== | ||
{| class="wikitable" | {| class="wikitable" | ||
!Generators | !Generators | ||
! Sesquitave notation | |||
!Sesquitave notation | |||
!Interval category name | !Interval category name | ||
!Generators | !Generators | ||
!Notation of 3/2 inverse | !Notation of 3/2 inverse | ||
!Interval category name | !Interval category name | ||
|- | |- | ||
| colspan="6" |The 4-note MOS has the following intervals (from some root): | | colspan="6" |The 4-note MOS has the following intervals (from some root): | ||
|- | |- | ||
|0 | |0 | ||
|Do, Sol | |Do, Sol | ||
|perfect unison | |perfect unison | ||
|0 | |0 | ||
|Do, Sol | |Do, Sol | ||
|sesquitave (just fifth) | |sesquitave (just fifth) | ||
|- | |- | ||
|1 | |1 | ||
|Fa, Do | |Fa, Do | ||
|perfect fourth | |perfect fourth | ||
| -1 | | -1 | ||
|Re, La | |Re, La | ||
|perfect second | |perfect second | ||
|- | |- | ||
|2 | |2 | ||
|Mib, Sib | |Mib, Sib | ||
|minor third | |minor third | ||
| -2 | | -2 | ||
|Mi, Si | |Mi, Si | ||
|major third | |major third | ||
|- | |- | ||
|3 | |3 | ||
|Reb, Lab | |Reb, Lab | ||
|diminished second | |diminished second | ||
| -3 | | -3 | ||
|Fa#, Do# | |Fa#, Do# | ||
|augmented fourth | |||
|augmented fourth | |||
|- | |- | ||
| colspan="6" |The chromatic 7-note MOS also has the following intervals (from some root): | | colspan="6" |The chromatic 7-note MOS also has the following intervals (from some root): | ||
|- | |- | ||
|4 | |4 | ||
|Dob, Solb | |Dob, Solb | ||
|diminished sesquitave | |diminished sesquitave | ||
| -4 | |||
| Do#, Sol# | |||
| | |||
|Do#, Sol# | |||
|augmented unison (chroma) | |augmented unison (chroma) | ||
|- | |- | ||
|5 | |5 | ||
|Fab, Dob | |Fab, Dob | ||
|diminished fourth | |diminished fourth | ||
| -5 | | -5 | ||
|Re#, La# | |Re#, La# | ||
|augmented second | |augmented second | ||
|- | |- | ||
|6 | |6 | ||
| Mibb, Sibb | |||
|diminished third | |||
|Mibb, Sibb | | -6 | ||
|diminished third | |||
| -6 | |||
|Mi#, Si# | |Mi#, Si# | ||
|augmented third | |augmented third | ||
|} | |||
|} | |||
==Genchain== | ==Genchain== | ||
The generator chain for this scale is as follows: | The generator chain for this scale is as follows: | ||
{| class="wikitable" | {| class="wikitable" | ||
|Mibb | |Mibb | ||
Sibb | Sibb | ||
|Fab | |Fab | ||
Dob | Dob | ||
|Dob | |Dob | ||
Solb | Solb | ||
|Reb | |Reb | ||
Lab | Lab | ||
|Mib | |Mib | ||
Sib | Sib | ||
|Fa | |Fa | ||
Do | Do | ||
|Do | |Do | ||
Sol | Sol | ||
|Re | |Re | ||
La | La | ||
|Mi | |Mi | ||
Si | Si | ||
|Fa# | |Fa# | ||
Do# | Do# | ||
|Do# | |Do# | ||
Sol# | Sol# | ||
|Re# | |Re# | ||
La# | La# | ||
|Mi# | |Mi# | ||
Si# | Si# | ||
|- | |- | ||
|d3 | |d3 | ||
|d4 | |d4 | ||
|d5 | |||
| | |||
|d2 | |d2 | ||
| m3 | |||
|m3 | |||
|P4 | |P4 | ||
|P1 | |P1 | ||
|P2 | |P2 | ||
|M3 | |M3 | ||
|A4 | |A4 | ||
| A1 | |||
|A2 | |||
|A3 | |||
|} | |||
==Modes== | |||
The mode names are based on the species of fifth: | The mode names are based on the species of fifth: | ||
{| class="wikitable" | {| class="wikitable" | ||
!Mode | !Mode | ||
!Scale | !Scale | ||
![[Modal UDP Notation|UDP]] | ![[Modal UDP Notation|UDP]] | ||
! colspan="3" |Interval type | ! colspan="3" |Interval type | ||
|- | |- | ||
!name | !name | ||
!pattern | !pattern | ||
!notation | !notation | ||
!2nd | !2nd | ||
!3rd | !3rd | ||
!4th | !4th | ||
|- | |- | ||
|Lydian | |Lydian | ||
|LLLs | |||
|LLLs | |||
|<nowiki>3|0</nowiki> | |<nowiki>3|0</nowiki> | ||
|P | |P | ||
|M | |M | ||
| A | |||
|A | |||
|- | |- | ||
|Major | |Major | ||
|LLsL | |LLsL | ||
|<nowiki>2|1</nowiki> | |<nowiki>2|1</nowiki> | ||
|P | |P | ||
|M | |M | ||
|P | |P | ||
|- | |- | ||
| Minor | |||
|Minor | |||
|LLsL | |LLsL | ||
|<nowiki>1|2</nowiki> | |<nowiki>1|2</nowiki> | ||
| P | |||
|P | |||
|m | |m | ||
|P | |P | ||
|- | |- | ||
|Phrygian | |Phrygian | ||
|sLLL | |sLLL | ||
|<nowiki>0|3</nowiki> | |<nowiki>0|3</nowiki> | ||
|d | |d | ||
|m | |m | ||
| P | |||
|} | |||
|P | |||
|} | |||
==Temperaments== | ==Temperaments== | ||
The most basic rank-2 temperament interpretation of diatonic is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> (p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations. | The most basic rank-2 temperament interpretation of diatonic is '''Napoli'''. The name "Napoli" comes from the “Neapolitan” sixth triad spelled <code>root-(p-2g)-(2p-3g)</code> (p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations. | ||
==='''Napoli-Meantone'''=== | ==='''Napoli-Meantone'''=== | ||
[[Subgroup]]: 3/2.6/5.8/5 | [[Subgroup]]: 3/2.6/5.8/5 | ||
[[Comma]] list: [[81/80]] | |||
[[POL2]] generator: ~9/8 = [[Tel:192.6406|192.6406]] | |||
[[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}] | |||
[[Vals]]: {{val list|~(7edf, 11edf, 18edf)}} | |||
==='''Napoli-Superpyth'''=== | |||
[[Subgroup]]: 3/2.7/6.14/9 | |||
[[Comma]] list: [[64/63]] | |||
[[Comma]] list: [[ | |||
[[POL2]] generator: ~8/7 = [[Tel:218.6371|218.6371]] | |||
[[Mapping]]: [{{val|1 1 2}}, {{val|0 -2 -3}}] | |||
[[Vals]]: {{val list|~(7edf, 10edf, 13edf, 16edf)}} | |||
====Scale tree==== | |||
The spectrum looks like this: | |||
{| class="wikitable" | |||
! colspan="3" rowspan="2" |Generator | |||
(bright) | |||
! colspan="2" |Cents | |||
! rowspan="2" |L | |||
! rowspan="2" |s | |||
! rowspan="2" |L/s | |||
! rowspan="2" | Comments | |||
|- | |||
!<u>Normalised</u> | |||
!''ed7\12'' | |||
|- | |||
| 1\4 | |||
| | |||
| | |||
|<u>171.428…</u> | |||
|''175'' | |||
|1 | |||
|1 | |||
|1.000 | |||
|Equalised | |||
|- | |||
|6\23 | |||
| | |||
| | |||
|<u>180</u> | |||
|''182.608…'' | |||
|6 | |||
|5 | |||
|1.200 | |||
| | |||
|- | |||
| | |||
| 11\42 | |||
| | |||
|<u>180.821…</u> | |||
|''183.{{Overline|3}}'' | |||
|11 | |||
|9 | |||
|1.222 | |||
| | |||
|- | |||
|5\19 | |||
| | |||
| | |||
|<u>181.{{Overline|81}}</u> | |||
|''184.210…'' | |||
|5 | |||
|4 | |||
|1.250 | |||
| | |||
|- | |||
| | |||
|14\53 | |||
| | |||
|<u>182.608…</u> | |||
|''184.905…'' | |||
|14 | |||
|11 | |||
|1.273 | |||
| | |||
|- | |||
| | |||
|9\34 | |||
| | |||
|<u>183.050…</u> | |||
|''185.294…'' | |||
| 9 | |||
|7 | |||
|1.286 | |||
| | |||
|- | |- | ||
|4\15 | |||
| | |||
| | |||
|<u>184.615…</u> | |||
|''186.{{Overline|6}}'' | |||
|4 | |||
|3 | |||
|1.333 | |||
| | |||
|- | |- | ||
| | |||
|11\41 | |||
| | |||
|<u>185.915…</u> | |||
|''187.804…'' | |||
| | |||
|11\41 | |||
| | |||
|<u>185.915…</u> | |||
|''187.804…'' | |||
|11 | |11 | ||
| 8 | |||
|8 | |||
|1.375 | |1.375 | ||
| | |||
| | |||
|- | |- | ||
| | |||
| | |||
|7\26 | |7\26 | ||
| | |||
| | |||
|<u>186.{{Overline|6}}</u> | |<u>186.{{Overline|6}}</u> | ||
|''188.461…'' | |''188.461…'' | ||
|7 | |7 | ||
|5 | |5 | ||
|1.400 | |1.400 | ||
| | |||
| | |||
|- | |- | ||
| | |||
| | |||
|10\37 | |10\37 | ||
| | |||
| | |||
|<u>187.5</u> | |<u>187.5</u> | ||
|''189.{{Overline|189}}'' | |''189.{{Overline|189}}'' | ||
|10 | |10 | ||
| 7 | |||
| 1.429 | |||
|7 | | | ||
|1.429 | |||
| | |||
|- | |- | ||
| | |||
| | |||
|13\48 | |13\48 | ||
| | | | ||
|<u>187.951…</u> | |<u>187.951…</u> | ||
|''189.58{{Overline|3}}'' | |''189.58{{Overline|3}}'' | ||
|13 | |13 | ||
|9 | |9 | ||
|1.444 | |1.444 | ||
| | | | ||
|- | |||
| | |||
|- | |16\59 | ||
| | |||
|<u>188.235…</u> | |||
| | |''189.830…'' | ||
|16\59 | |||
| | |||
|<u>188.235…</u> | |||
|''189.830…'' | |||
|16 | |16 | ||
|11 | |11 | ||
|1.4545 | |1.4545 | ||
| | | | ||
|- | |- | ||
| 3\11 | |||
| | |||
|3\11 | |||
| | | | ||
|<u>189.473…</u> | |<u>189.473…</u> | ||
|''190.{{Overline|90}}'' | |''190.{{Overline|90}}'' | ||
| 3 | |||
|3 | |||
|2 | |2 | ||
|1.500 | |1.500 | ||
|Napoli-Meantone starts here | |Napoli-Meantone starts here | ||
|- | |- | ||
| | | | ||
|14\51 | |14\51 | ||
| | |||
| | |||
|<u>190.{{Overline|90}}</u> | |<u>190.{{Overline|90}}</u> | ||
|''192.156…'' | |''192.156…'' | ||
|14 | |14 | ||
| 9 | |||
| 1.556 | |||
|9 | | | ||
|1.556 | |||
| | |||
|- | |- | ||
| | | | ||
|11\40 | |11\40 | ||
| | |||
| | |||
|<u>191.304…</u> | |<u>191.304…</u> | ||
|''192.5'' | |''192.5'' | ||
|11 | |11 | ||
| 7 | |||
| 1.571 | |||
|7 | |||
|1.571 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|8\29 | |8\29 | ||
| | |||
| | |||
|<u>192</u> | |<u>192</u> | ||
|''193.103…'' | |''193.103…'' | ||
| 8 | |||
| 5 | |||
|8 | |||
|5 | |||
|1.600 | |1.600 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
|5\18 | |5\18 | ||
| | |||
| | |||
|<u>193.548…</u> | |<u>193.548…</u> | ||
|''194.{{Overline|4}}'' | |''194.{{Overline|4}}'' | ||
|5 | |5 | ||
|3 | |3 | ||
|1.667 | |1.667 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | | | ||
|12\43 | |12\43 | ||
|<u>194.{{Overline|594}}</u> | |<u>194.{{Overline|594}}</u> | ||
|''195.348…'' | |''195.348…'' | ||
| 12 | |||
| 7 | |||
|12 | |||
|7 | |||
|1.714 | |1.714 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
|7\25 | |7\25 | ||
| | |||
| | |||
|<u>195.348…</u> | |<u>195.348…</u> | ||
|''196'' | |''196'' | ||
|7 | |7 | ||
|4 | |4 | ||
|1.750 | |1.750 | ||
| | |||
| | |||
|- | |- | ||
| | |||
| | |||
|9\32 | |9\32 | ||
| | |||
| | |||
|<u>196.{{Overline|36}}</u> | |<u>196.{{Overline|36}}</u> | ||
|''196.875'' | |''196.875'' | ||
|9 | |9 | ||
|5 | |5 | ||
|1.800 | |1.800 | ||
| | | | ||
|- | |- | ||
| | | | ||
|11\39 | |11\39 | ||
| | | | ||
|<u>197.014…</u> | |<u>197.014…</u> | ||
|''197.435…'' | |''197.435…'' | ||
|11 | |11 | ||
| 6 | |||
|6 | |||
|1.833 | |1.833 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
|13\46 | |13\46 | ||
| | | | ||
|<u>197.468…</u> | |<u>197.468…</u> | ||
|''197.826…'' | |''197.826…'' | ||
| 13 | |||
| 7 | |||
|13 | | 1.857 | ||
|7 | |||
|1.857 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|15\53 | |15\53 | ||
| | | | ||
|<u>197.802…</u> | |<u>197.802…</u> | ||
|''198.113…'' | |''198.113…'' | ||
|15 | |15 | ||
|8 | |8 | ||
|1.875 | |1.875 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 17\60 | |||
| | |||
|<u>198.058…</u> | |<u>198.058…</u> | ||
|''198.{{Overline|3}}'' | |''198.{{Overline|3}}'' | ||
|17 | |17 | ||
| 9 | |||
| 1.889 | |||
|9 | |||
|1.889 | |||
| | | | ||
|- | |- | ||
| | |||
| | |||
|19\67 | |19\67 | ||
| | |||
| | |||
|<u>198.260…</u> | |<u>198.260…</u> | ||
|''198.507…'' | |''198.507…'' | ||
|19 | |19 | ||
| 10 | |||
|10 | |||
|1.900 | |1.900 | ||
| | | | ||
|- | |- | ||
| | | | ||
|21\74 | |21\74 | ||
| | | | ||
|<u>198.425…</u> | |<u>198.425…</u> | ||
| ''198.{{Overline |''198.''{{Overline|648}} | |||
|''198.{{Overline|648} | |||
|21 | |21 | ||
| 11 | |||
|11 | |||
|1.909 | |1.909 | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
|23\81 | |23\81 | ||
| | | | ||
|<u>198.561…</u> | |<u>198.561…</u> | ||
|''198.765…'' | |''198.765…'' | ||
|23 | |23 | ||
|12 | |12 | ||
| 1.917 | |||
|1.917 | |||
| | | | ||
|- | |- | ||
| | | | ||
| 25\88 | |||
| | |||
|<u>198.675…</u> | |<u>198.675…</u> | ||
|''198.8{{Overline|63}}'' | |''198.8{{Overline|63}}'' | ||
|25 | |25 | ||
| 13 | |||
|13 | |||
|1.923 | |1.923 | ||
| | | | ||
|- | |- | ||
| | | | ||
|27\95 | |27\95 | ||
| | |||
| | |||
|<u>198.773…</u> | |<u>198.773…</u> | ||
|''198.947…'' | |''198.947…'' | ||
|27 | |27 | ||
|14 | |14 | ||
|1.929 | |1.929 | ||
| | | | ||
|- | |- | ||
| | | | ||
|29\102 | |29\102 | ||
| | | | ||
|<u>198.857…</u> | |<u>198.857…</u> | ||
|''199.019…'' | |''199.019…'' | ||
|29 | |29 | ||
|15 | |15 | ||
|1.933 | |1.933 | ||
| | | | ||
|- | |- | ||
| | |||
| 31\109 | |||
| | | | ||
|31\109 | |||
| | |||
|<u>198.930…</u> | |<u>198.930…</u> | ||
|''199.082…'' | |''199.082…'' | ||
|31 | |31 | ||
|16 | |16 | ||
|1.9375 | |1.9375 | ||
| | | | ||
|- | |- | ||
| | | | ||
|33\116 | |33\116 | ||
| | | | ||
|<u>198.994…</u> | |<u>198.994…</u> | ||
|''199.137…'' | |''199.137…'' | ||
|33 | |33 | ||
|17 | |17 | ||
|1.941 | |1.941 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
|35\123 | |35\123 | ||
| | | | ||
|<u>199.052…</u> | |<u>199.052…</u> | ||
|''199.186…'' | |''199.186…'' | ||
|35 | |35 | ||
|18 | |18 | ||
|1.944 | |1.944 | ||
| | | | ||
|- | |- | ||
|2\7 | |2\7 | ||
| | | | ||
| | | | ||
|<u>200</u> | |<u>200</u> | ||
|''200'' | |''200'' | ||
|2 | |2 | ||
|1 | |1 | ||
|2.000 | |2.000 | ||
| Napoli-Meantone ends, Napoli-Pythagorean begins | |||
|Napoli-Meantone ends, Napoli-Pythagorean begins | |||
|- | |- | ||
| | | | ||
|17\59 | |17\59 | ||
| | | | ||
|<u>201.980…</u> | |<u>201.980…</u> | ||
|''201.694…'' | |''201.694…'' | ||
|17 | |17 | ||
|8 | |8 | ||
|2.125 | |2.125 | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
| 15\52 | |||
| | |||
|15\52 | |||
| | |||
|<u>202.247…</u> | |<u>202.247…</u> | ||
|''201.923…'' | |''201.923…'' | ||
|15 | |15 | ||
|7 | |7 | ||
|2.143 | |2.143 | ||
| | | | ||
|- | |- | ||
| | | | ||
|13\45 | |13\45 | ||
| | | | ||
|<u>202.597…</u> | |<u>202.597…</u> | ||
|''202.{{Overline|2}}'' | |''202.{{Overline|2}}'' | ||
|13 | |13 | ||
|6 | |6 | ||
|2.167 | |2.167 | ||
| | | | ||
|- | |- | ||
| | | | ||
|11\38 | |11\38 | ||
| | | | ||
|<u>203.076…</u> | |<u>203.076…</u> | ||
|''202.631…'' | |''202.631…'' | ||
|11 | |11 | ||
|5 | |5 | ||
|2.200 | |2.200 | ||
| | | | ||
|- | |- | ||
| | | | ||
|9\31 | |9\31 | ||
| | | | ||
|<u>203.773…</u> | |<u>203.773…</u> | ||
|''203.225…'' | |''203.225…'' | ||
|9 | |9 | ||
|4 | |4 | ||
| 2.250 | |||
| | |||
|2.250 | |||
| | |||
|- | |- | ||
| | | | ||
|7\24 | |7\24 | ||
| | | | ||
|<u>204.878…</u> | |<u>204.878…</u> | ||
|''204.1{{Overline|6}}'' | |''204.1{{Overline|6}}'' | ||
| 7 | |||
|7 | |||
|3 | |3 | ||
|2.333 | |2.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
| | |||
|12\41 | |12\41 | ||
|<u>205.714…</u> | |<u>205.714…</u> | ||
|''204.878…'' | |''204.878…'' | ||
|12 | |12 | ||
|5 | |5 | ||
|2.400 | |2.400 | ||
| | | | ||
|- | |- | ||
| | | | ||
|5\17 | |5\17 | ||
| | |||
| | |||
|<u>206.896…</u> | |<u>206.896…</u> | ||
|''205.882…'' | |''205.882…'' | ||
|5 | |5 | ||
|2 | |2 | ||
|2.500 | |2.500 | ||
|Napoli-Neogothic heartland is from here… | |Napoli-Neogothic heartland is from here… | ||
|- | |- | ||
| | | | ||
| | |||
|18\61 | |18\61 | ||
|<u>207.692…</u> | |<u>207.692…</u> | ||
|''206.557…'' | |''206.557…'' | ||
|18 | |18 | ||
|7 | |7 | ||
| 2.571 | |||
| | |||
|2.571 | |||
| | |||
|- | |- | ||
| | | | ||
| | |||
| | |||
|13\44 | |13\44 | ||
|<u>208</u> | |<u>208</u> | ||
|''206.{{Overline|81}}'' | |||
|''206. | |||
|13 | |13 | ||
| 5 | |||
| 2.600 | |||
|5 | |||
|2.600 | |||
| | | | ||
|- | |- | ||
| | | | ||
|8\27 | |8\27 | ||
| | | | ||
|<u>208.695…</u> | |<u>208.695…</u> | ||
|''207.{{Overline|407}}'' | |||
| 8 | |||
|''207. | |||
|8 | |||
|3 | |3 | ||
|2.667 | |2.667 | ||
|…to here | |…to here | ||
|- | |- | ||
| | |||
| | |||
|11\37 | |11\37 | ||
| | | | ||
|<u>209.523…</u> | |<u>209.523…</u> | ||
|''208.{{Overline|108}}'' | |||
|''208. | |||
|11 | |11 | ||
|4 | |4 | ||
| 2.750 | |||
|2.750 | |||
| | | | ||
|- | |- | ||
| | | | ||
|14\47 | |14\47 | ||
| | | | ||
|<u>210</u> | |<u>210</u> | ||
|''208.510…'' | |''208.510…'' | ||
| 14 | |||
| 5 | |||
|14 | |||
|5 | |||
|2.800 | |2.800 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
|17\57 | |17\57 | ||
| | | | ||
|<u>210.309…</u> | |<u>210.309…</u> | ||
|''208.771…'' | |''208.771…'' | ||
|17 | |17 | ||
|6 | |6 | ||
|2.833 | |2.833 | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
| 20\67 | |||
|20\67 | |||
| | | | ||
|<u>210.526…</u> | |<u>210.526…</u> | ||
|''208.955…'' | |''208.955…'' | ||
| 20 | |||
|20 | |||
|7 | |7 | ||
|2.857 | |2.857 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 23\77 | |||
|23\77 | |||
| | | | ||
|<u>210.687…</u> | |<u>210.687…</u> | ||
|''209.{{Overline|09}}'' | |''209.{{Overline|09}}'' | ||
|23 | |23 | ||
|8 | |8 | ||
|2.875 | |2.875 | ||
| | | | ||
|- | |- | ||
|3\10 | |3\10 | ||
| | |||
| | |||
| | | | ||
|<u>211.764…</u> | |<u>211.764…</u> | ||
|''210'' | |''210'' | ||
|3 | |3 | ||
| 1 | |||
|1 | |||
|3.000 | |3.000 | ||
|Napoli-Pythagorean ends, Napoli-Superpyth begins | |Napoli-Pythagorean ends, Napoli-Superpyth begins | ||
|- | |- | ||
| | |||
| | |||
|22\73 | |22\73 | ||
| | |||
| | |||
|<u>212.903…</u> | |<u>212.903…</u> | ||
|''210.958…'' | |''210.958…'' | ||
|22 | |22 | ||
|7 | |7 | ||
|3.143 | |3.143 | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
|19\63 | |19\63 | ||
| | |||
| | |||
|<u>213.084…</u> | |<u>213.084…</u> | ||
|''211.{{Overline|1}}'' | |''211.{{Overline|1}}'' | ||
|19 | |19 | ||
|6 | |6 | ||
|3.167 | |3.167 | ||
| | | | ||
|- | |- | ||
| | | | ||
|16\53 | |16\53 | ||
| | | | ||
|<u>213.{{Overline|3}}</u> | |<u>213.{{Overline|3}}</u> | ||
|''211.320…'' | |''211.320…'' | ||
|16 | |16 | ||
|5 | |5 | ||
|3.200 | |3.200 | ||
| | | | ||
|- | |- | ||
| | |||
| | |||
|13\43 | |13\43 | ||
| | | | ||
|<u>213.698…</u> | |<u>213.698…</u> | ||
|''211.627…'' | |''211.627…'' | ||
|13 | |13 | ||
|4 | |4 | ||
|3.250 | |3.250 | ||
| | | | ||
|- | |- | ||
| | | | ||
| 10\33 | |||
|10\33 | |||
| | | | ||
|<u>214.285…</u> | |<u>214.285…</u> | ||
|''212.{{Overline|12}}'' | |''212.{{Overline|12}}'' | ||
|10 | |10 | ||
|3 | |3 | ||
|3.333 | |3.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
|7\23 | |7\23 | ||
| | | | ||
|<u>215.384…</u> | |<u>215.384…</u> | ||
|''213.043…'' | |''213.043…'' | ||
|7 | |7 | ||
|2 | |2 | ||
|3.500 | |3.500 | ||
| | | | ||
|- | |- | ||
| | | | ||
|11\36 | |11\36 | ||
| | | | ||
|<u>216.393…</u> | |<u>216.393…</u> | ||
|''213.{{Overline|3}}'' | |''213.{{Overline|3}}'' | ||
| 11 | |||
|11 | |||
|3 | |3 | ||
|3.667 | |3.667 | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
|15\49 | |15\49 | ||
| | | | ||
|<u>216.867…</u> | |<u>216.867…</u> | ||
|''214.285…'' | |''214.285…'' | ||
|15 | |15 | ||
|4 | |4 | ||
|3.750 | |3.750 | ||
| | | | ||
|- | |- | ||
|4\13 | |4\13 | ||
| | | | ||
| | | | ||
|<u>218.{{Overline|18}}</u> | |<u>218.{{Overline|18}}</u> | ||
|''215.385…'' | |''215.385…'' | ||
|4 | |4 | ||
|1 | |1 | ||
|4.000 | |4.000 | ||
| | | | ||
|- | |- | ||
| | | | ||
|13\42 | |13\42 | ||
| | | | ||
|<u>219.718…</u> | |<u>219.718…</u> | ||
|''216.{{Overline|6}}'' | |''216.{{Overline|6}}'' | ||
|13 | |13 | ||
|3 | |3 | ||
|4.333 | |4.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
|9\29 | |9\29 | ||
| | | | ||
|<u>220.408…</u> | |<u>220.408…</u> | ||
|''217.241…'' | |''217.241…'' | ||
|9 | |9 | ||
|2 | |2 | ||
|4.500 | |4.500 | ||
| | |||
| | |||
|- | |- | ||
| | | | ||
|14\45 | |14\45 | ||
| | | | ||
|<u>221.052…</u> | |<u>221.052…</u> | ||
|''217.{{Overline|7}}'' | |''217.{{Overline|7}}'' | ||
|14 | |14 | ||
| 3 | |||
| 4.667 | |||
|3 | |||
|4.667 | |||
| | | | ||
|- | |- | ||
|5\16 | |5\16 | ||
| | | | ||
| | | | ||
|<u>222.{{Overline|2}}</u> | |<u>222.{{Overline|2}}</u> | ||
|''218.75'' | |''218.75'' | ||
|5 | |5 | ||
| 1 | |||
|1 | |||
|5.000 | |5.000 | ||
|Napoli-Superpyth ends | |Napoli-Superpyth ends | ||
|- | |- | ||
| | | | ||
|16\51 | |16\51 | ||
| | | | ||
|<u>223.255…</u> | |<u>223.255…</u> | ||
|''219.607…'' | |''219.607…'' | ||
|16 | |16 | ||
|3 | |3 | ||
|5.333 | |5.333 | ||
| | | | ||
|- | |- | ||
| | | | ||
|11\35 | |11\35 | ||
| | | | ||
|<u>223.728…</u> | |<u>223.728…</u> | ||
|''220'' | |''220'' | ||
|11 | |11 | ||
|2 | |2 | ||
|5.500 | |5.500 | ||
| | | | ||
|- | |- | ||
| | | | ||
|17\54 | |17\54 | ||
| | | | ||
|<u>224.175…</u> | |<u>224.175…</u> | ||
|''220.{{Overline|370}}'' | |''220.{{Overline|370}}'' | ||
| 17 | |||
| 3 | |||
|17 | |||
|3 | |||
|5.667 | |5.667 | ||
| | | | ||
|- | |- | ||
|6\19 | |6\19 | ||
| | |||
| | |||
| | |||
| | |||
|<u>225</u> | |<u>225</u> | ||
|''221.052…'' | |''221.052…'' | ||
|6 | |6 | ||
|1 | |1 | ||
|6.000 | |6.000 | ||
| | |||
| | |||
|- | |- | ||
|1\3 | |1\3 | ||
| | |||
| | | | ||
|<u>240</u> | |<u>240</u> | ||
|''233.{{Overline|3}}'' | |''233.{{Overline|3}}'' | ||
|1 | |1 | ||
|0 | |0 | ||
|→ inf | |→ inf | ||
|Paucitonic | |Paucitonic | ||
|} | |} |
Revision as of 03:25, 16 July 2022
Lua error in Module:MOS at line 46: attempt to index local 'equave' (a nil value).3L 1s<3/2>, is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating 3L 1s. The name of the period interval is called the sesquitave (by analogy to the tritave).
The generator range is 171.4 to 240 cents, placing it near the diatonic major second, usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fifth complement (480 to 514.3 cents).
In the fifth-repeating version of the diatonic scale, each tone has a 3/2 perfect fifth above it. The scale has two major chords and two minor chords. P
Basic Angel is in 7edf, which is a very good fifth-based equal tuning similar to 12edo.
Notation
− There are 3 main ways to notate the diatonic scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 4 naturals (eg. Do Re Mi Fa, Sol La Si Do). Given that 1-5/4-5/3 is fifth-equivalent to a tone cluster of 1-10/9-5/4, it may be more convenient to notate diatonic scales as repeating at the double or triple sesquitave (major ninth or thirteenth), however it does make navigating the genchain harder. This way, 5/3 is its own pitch class, distinct from 10/9. Notating this way produces a major ninth which is the Aeolian mode of Napoli[6L 2s] or a major thirteenth which is the Dorian mode of Bijou[9L 3s]. Since there are exactly 8 naturals in double sesquitave notation and 12 in triple sesquitave notation, letters A-H (FGABHCDEF) or dozenal digits (0123456789XE0 or D1234567FGACD with flats written C molle) may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | ||
---|---|---|---|---|---|---|---|---|---|
Diatonic | Napoli | Bijou | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
Do#, Sol# | F# | 0#, D# | 1\15
46.153… |
1\11
63.157… |
2\18
77.419… |
1\7
100 |
3\17
124.137… |
2\10
141.176… |
3\13
163.63 |
Reb, Lab | Gb | 1b, 1c | 3\15
138.461… |
2\11
126.315… |
3\18
116.129… |
2\17
82.758… |
1\10
70.588… |
1\13
54.54 | |
Re, La | G | 1 | 4\15
184.615… |
3\11
189.473… |
5\18
193.548… |
2\7
200 |
5\17
206.896… |
3\10
211.764… |
4\13
218.18 |
Re#, La# | G# | 1# | 5\15
230.769… |
4\11
252.631… |
7\18
270.967… |
3\7
300 |
8\17
331.034… |
5\10
352.941… |
7\13
381.81 |
Mib, Sib | Ab | 2b, 2c | 7\15
323.076… |
5\11
315.789… |
8\18
309.677… |
7\17
289.655… |
4\10
282.352… |
5\13
272.72 | |
Mi, Si | A | 2 | 8\15
369.230… |
6\11
378.947… |
10\18
387.096… |
4\7
400 |
10\17
413.793… |
6\10
423.529… |
8\13
436.36 |
Mi#, Si# | A# | 2# | 9\15
415.384… |
7\11
442.105… |
12\18
464.516… |
5\7
500 |
13\17
537.931… |
8\10
564.705… |
11\13
600 |
Fab, Dob | Bbb | 3b, 3c | 10\15
461.538… |
11\18
425.806… |
4\7
400 |
9\17
372.413… |
5\10
352.941… |
6\13
327.27 | |
Fa, Do | Bb | 3 | 11\15
507.692… |
8\11
505.263… |
13\18
503.225… |
5\7
500 |
12\17
496.551… |
7\10
494.117… |
9\13
490.90 |
Fa#, Do# | B | 3# | 12\15
553.846… |
9\11
568.421… |
15\18
580.645… |
6\7
600 |
15\17
620.689… |
9\10
635.294… |
12\13
654.54 |
Fax, Dox | B# | 3x | 13\15
600 |
10\11
631.578… |
17\18
658.064… |
7\7
700 |
18\17
744.827… |
11\10
776.470… |
15\13
818.18 |
Dob, Solb | Hb | 4b, 4c | 14\15
646.153… |
16\18
619.354… |
6\7
600 |
14\17
579.310… |
8\10
564.705… |
10\13
545.45 | |
Do, Sol | H | 4 | 15\15
692.307… |
11\11
694.736… |
18\18
696.774… |
7\7
700 |
17\17
703.448… |
10\10
705.882… |
13\13
709.09 |
Do#, Sol# | Η# | 4# | 16\15
738.461… |
12\11
757.894… |
20\18
774.193… |
8\8
800 |
20\17
827.586… |
12\10
847.058… |
16\13
872.72 |
Reb, Lab | Cb | 5b, 5c | 18\15
830.769… |
13\11
821.052… |
21\18
812.903… |
19\17
786.206… |
11\10
776.470… |
14\13
763.63 | |
Re, La | C | 5 | 19\18
876.923… |
14\11
884.210… |
23\18
890.322… |
9\5
900 |
22\17
910.344… |
13\10
917.647… |
17\13
927.27 |
Re#, La# | C# | 5# | 20\15
923.076… |
15\11
947.368… |
25\18
967.741… |
10\7
1000 |
25\17
1034.482… |
15\10
1058.823… |
20\13
1090.90 |
Mib, Sib | Db | 6b, 6c | 22\15
1015.384… |
16\11
1010.526… |
26\18
1006.451… |
24\17
993.103… |
14\10
988.235… |
18\13
981.81 | |
Mi, Si | D | 6 | 23\15
1061.538… |
17\11
1073.684… |
28\18
1083.870… |
11\7
1100 |
27\17
1117.241… |
16\10
1129.411… |
21\9
1145.45 |
Mi#, Si# | D# | 6# | 24\15
1107.692… |
18\11
1136.842… |
30\18
1161.290… |
12\7
1200 |
30\17
1241.379… |
18\10
1270.588… |
24\13
1309.09 |
Fab, Dob | Ebb | 7b, 7c | 25\15
1153.846… |
29\18
1122.580… |
11\7
1100 |
26\17
1075.862… |
15\10
1058.823… |
19\13
1036.36 | |
Fa, Do | Eb | 7 | 26\15
1200 |
19\11
1200 |
31\18
1200 |
12\7
1200 |
29\17
1200 |
17\10
1200 |
22\13
1200 |
Fa#, Do# | E | 7# | 27\15
1246.153… |
20\11
1263.157… |
33\18
1277.419… |
13\7
1300 |
32\17
1324.137… |
19\10
1341.176… |
25\13
1363.63 |
Fax, Dox | E# | 7x | 28\15
1292.307… |
21\11
1326.315… |
35\18
1354.838… |
14\7
1400 |
35\17
1448.275… |
21\10
1482.352… |
28\13
1527.27 |
Dob, Solb | Fb | 8b, Fc | 29\15
1338.461… |
34\18
1316.129… |
13\7
1300 |
31\17
1282.758… |
18\10
1270.588… |
23\18
1254.54 | |
Do, Sol | F | 8, F | 30\15
1384.615… |
22\11
1389.473… |
36\18
1393.548… |
14\7
1400 |
34\17
1406.896… |
20\10
1411.764… |
26\13
1418.18 |
Do#, Sol# | F# | 8#, F# | 31\15
1430.769… |
23\11
1452.631… |
38\18
1470.967… |
15\7
1500 |
37\17
1531.034… |
22\10
1552.941… |
29\13
1581.81 |
Reb, Lab | Gb | 9b, Gc | 33\15
1523.076… |
24\11
1515.789… |
39\18
1509.677… |
36\17
1489.655… |
21\10
1482.352… |
27\13
1472.72 | |
Re, La | G | 9, G | 34\15
1569.230… |
25\11
1578.947… |
41\18
1587.096… |
16\7
1600 |
39\17
1613.793… |
23\10
1623.529… |
30\13
1636.36 |
Re#, La# | G# | 9#, G# | 35\15
1615.384… |
26\11
1642.105… |
43\18
1664.516… |
17\7
1700 |
42\17
1737.931… |
25\10
1764.705… |
33\13
1800 |
Mib, Sib | Ab | Xb, Ac | 37\15
1707.692… |
27\11
1705.263… |
44\18
1703.225… |
41\17
1696.551… |
24\10
1694.117… |
31\13
1690.90 | |
Mi, Si | A | X, A | 38\15
1753.846… |
28\11
1768.421… |
46\18
1780.645… |
18\7
1800 |
44\17
1820.689… |
26\10
1835.294… |
34\13
1854.54 |
Mi#, Si# | A# | X#, A# | 39\15
1800 |
29\11
1831.578… |
48\18
1858.064… |
19\7
1900 |
47\17
1944.827… |
28\10
1976.470… |
37\13
2018.18 |
Fab, Dob | Bbb | Ebb, Ccc | 40\15
1846.153… |
47\18
1819.354… |
18\7
1800 |
43\17
1779.310… |
25\10
1764.705… |
32\13
1745.45 | |
Fa, Do | Bb | Eb, Cc | 41\15
1892.307… |
30\11
1894.736… |
49\18
1896.774… |
19\7
1900 |
46\17
1903.448… |
27\10
1905.882… |
35\13
1909.09 |
Fa#, Do# | B | E, C | 42\15
1938.461… |
31\11
1957.894… |
51\18
1974.193… |
20\7
2000 |
49\17
2027.586… |
29\10
1976.470… |
38\13
2072.72 |
Fax, Dox | B# | Ex, Cx | 43\15
1984.615… |
32\11
2021.052… |
53\18
2051.612… |
21\7
2100 |
52\17
2151.724… |
31\10
2188.235… |
41\13
2236.36 |
Dob, Solb | Hb | 0b, Dc | 44\15
2030.769… |
52\18
2012.903… |
20\7
2000 |
48\17
1986.206… |
28\10
1967.470… |
36\13
1963.63 | |
Do, Sol | H | 0, D | 45\15
2076.923… |
33\11
2084.210… |
54\18
2090.322… |
21\7
2100 |
51\17
2110.344… |
30\10
2117.647… |
39\13
2127.27 |
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | ||
---|---|---|---|---|---|---|---|---|---|
Diatonic | Napoli | Bijou | ~15edf | ~11edf | ~18edf | ~7edf | ~17edf | ~10edf | ~13edf |
Do#, Sol# | F# | 0#, D# | 1\15
46.6 |
1\11
63.63 |
2\18
77.7̄ |
1\7
100 |
3\17
123.529… |
2\10
140 |
3\13
161.538… |
Reb, Lab | Gb | 1b, 1c | 3\15
140 |
2\11
127.27 |
3\18
116.6 |
2\17
82.352… |
1\10
70 |
1\13
53.846… | |
Re, La | G | 1 | 4\15
186.6 |
3\11
190.90 |
5\18
194.4 |
2\7
200 |
5\17
205.882… |
3\10
210 |
4\13
215.384… |
Re#, La# | G# | 1# | 5\15
233.3 |
4\11
254.54 |
7\18
272.2̄ |
3\7
300 |
8\17
329.411… |
5\10
350 |
7\13
376.923… |
Mib, Sib | Ab | 2b, 2c | 7\15
326.6 |
5\11
318.18 |
8\18
311.1 |
7\17
288.235… |
4\10
280 |
5\13
269.230… | |
Mi, Si | A | 2 | 8\15
373.3 |
6\11
381.81 |
10\18
388.8 |
4\7
400 |
10\17
411.764… |
6\10
420 |
8\13
430.769… |
Mi#, Si# | A# | 2# | 9\15
420 |
7\11
445.45 |
12\18
466.6 |
5\7
500 |
13\17
535.294… |
8\10
560 |
11\13
592.307… |
Fab, Dob | Bbb | 3b, 3c | 10\15
466.6 |
11\18
427.7 |
4\7
400 |
9\17
370.588… |
5\10
350 |
6\13
323.076.… | |
Fa, Do | Bb | 3 | 11\15
513.3 |
8\11
509.09 |
13\18
505.5 |
5\7
500 |
12\17
494.117… |
7\10
490 |
9\13
484.615… |
Fa#, Do# | B | 3# | 12\15
560 |
9\11
572.72 |
15\18
583.3 |
6\7
600 |
15\17
617.647… |
9\10
630 |
12\13
646.153… |
Fax, Dox | B# | 3x | 13\15
606. 6 |
10\11
636.36 |
17\18
661.1 |
7\7
700 |
18\17
741.176… |
11\10
770 |
15\13
807.692… |
Dob, Solb | Hb | 4b, 4c | 14\15
653.3 |
16\18
622.2 |
6\7
600 |
14\17
576.470… |
8\10
560 |
10\13
538.461… | |
Do, Sol | H | 4 | 700 | ||||||
Do#, Sol# | Η# | 4# | 16\15
746.6 |
12\11
763.63 |
20\18
777.7 |
8\7
800 |
20\17
823.529… |
12\10
840 |
16\13
861.538… |
Reb, Lab | Cb | 5b, 5c | 18\15
840 |
13\11
827.27 |
21\18
816.6 |
19\17
782.352… |
11\10
770 |
14\13
753.846… | |
Re, La | C | 5 | 19\15
886.6 |
14\11
890.90 |
23\18
894.4 |
9\7
900 |
22\17
905.882… |
13\10
910 |
17\13
915.384… |
Re#, La# | C# | 5# | 20\15
933.3 |
15\11
954.54 |
25\18
972.2 |
10\7
1000 |
25\17
1029.411… |
15\10
1050 |
20\13
1076.923… |
Mib, Sib | Db | 6b, 6c | 22\15
1026.6 |
16\11
1018.18 |
26\18
1011. 1 |
24\17
988.235… |
14\10
980 |
18\13
969.230… | |
Mi, Si | D | 6 | 23\15
1073.3 |
17\11
1081.81 |
28\18
1088.8 |
11\7
1100 |
27\17
1111.764… |
16\10
1120 |
21\13
1130.769… |
Mi#, Si# | D# | 6# | 24\15
1120 |
18\11
1145.45 |
30\18
1166.6 |
12\7
1200 |
30\17
1235.294… |
18\10
1260 |
24\13
1292.307… |
Fab, Dob | Ebb | 7b, 7c | 25\15
1166.6 |
29\18
1127.7 |
11\7
1100 |
26\17
1070.588… |
15\10
1050 |
19\13
1023.076… | |
Fa, Do | Eb | 7 | 26\15
1213.3 |
19\11
1209.09 |
31\18
1205.5 |
12\7
1200 |
29\17
1194.117… |
17\10
1190 |
22\13
1184.615… |
Fa#, Do# | E | 7# | 27\15
1260 |
20\11
1272.72 |
33\18
1283.3 |
13\7
1300 |
32\17
1317.647… |
19\10
1330 |
25\13
1346.153… |
Fax, Dox | E# | 7x | 28\15
1306.6 |
21\11
1336.36 |
35\18
1361.1 |
14\7
1400 |
35\17
1441.176… |
21\10
1470 |
28\13
1507.692… |
Dob, Solb | Fb | 8b, Fc | 29\15
1333.3 |
34\18
1322.2 |
13\7
1300 |
31\17
1276.470… |
18\10
1260 |
23\13
1238.461… | |
Do, Sol | F | 8, F | 1400 | ||||||
Do#, Sol# | F# | 8#, F# | 31\15
1446.6 |
23\11
1463.63 |
38\18
1477.7̄ |
15\7
1500 |
37\17
1523.529… |
22\10
1540 |
29\13
1561.538… |
Reb, Lab | Gb | 9b, Gc | 33\15
1540 |
24\11
1527.27 |
39\18
1516.6 |
36\17
1482.352… |
21\10
1470 |
27\13
1453.846… | |
Re, La | G | 9, G | 34\15
1586.6 |
25\11
1590.90 |
41\18
1594.4 |
16\7
1600 |
39\17
1605.882… |
23\10
1610 |
30\13
1615.384… |
Re#, La# | G# | 9#, G# | 35\15
1633.3 |
26\11
1654.54 |
43\18
1672.2 |
17\7
1700 |
42\17
1729.411… |
25\10
1750 |
33\13
1776.923… |
Mib, Sib | Ab | Xb, Ac | 37\15
1726.6 |
27\11
1718.18 |
44\18
1711.1 |
41\17
1688.235… |
24\10
1680 |
31\13
1669.230… | |
Mi, Si | A | X, A | 38\15
1773.3 |
28\11
1781.81 |
46\18
1788.8 |
18\7
1800 |
44\17
1811.764… |
26\10
1820 |
34\13
1830.769… |
Mi#, Si# | A# | X#, A# | 39\15
1820 |
29\11
1845.45 |
48\18
1866.6 |
19\7
1900 |
47\17
1935.294… |
28\10
1960 |
37\13
1992.307… |
Fab, Dob | Bbb | Ebb, Ccc | 40\15
1866.6 |
47\18
1827.7 |
18\7
1800 |
43\17
1770.588… |
25\10
1750 |
32\13
1723.076… | |
Fa, Do | Bb | Eb, Cc | 41\15
1913.3 |
30\11
1909.09 |
49\18
1905.5 |
19\7
1900 |
46\17
1894.117… |
27\10
1890 |
35\13
1884.615… |
Fa#, Do# | B | E, C | 42\15
1960 |
31\11
1972.72 |
51\18
1983.3 |
20\7
2000 |
49\17
2017.647… |
29\10
2030 |
38\13
2046.153… |
Fax, Dox | B# | Ex, Cx | 43\15
2006.6 |
32\11
2036.36 |
53\18
2061. 1 |
21\7
2100 |
52\17
2141.176… |
31\10
2170 |
41\13
2207.692… |
Dob, Solb | Hb | 0b, Dc | 44\15
2053.3 |
52\18
2022.2 |
20\7
2000 |
48\17
1976.470… |
28\10
1960 |
36\13
1938.615… | |
Do, Sol | H | 0, D | 2100 |
Intervals
Generators | Sesquitave notation | Interval category name | Generators | Notation of 3/2 inverse | Interval category name |
---|---|---|---|---|---|
The 4-note MOS has the following intervals (from some root): | |||||
0 | Do, Sol | perfect unison | 0 | Do, Sol | sesquitave (just fifth) |
1 | Fa, Do | perfect fourth | -1 | Re, La | perfect second |
2 | Mib, Sib | minor third | -2 | Mi, Si | major third |
3 | Reb, Lab | diminished second | -3 | Fa#, Do# | augmented fourth |
The chromatic 7-note MOS also has the following intervals (from some root): | |||||
4 | Dob, Solb | diminished sesquitave | -4 | Do#, Sol# | augmented unison (chroma) |
5 | Fab, Dob | diminished fourth | -5 | Re#, La# | augmented second |
6 | Mibb, Sibb | diminished third | -6 | Mi#, Si# | augmented third |
Genchain
The generator chain for this scale is as follows:
Mibb
Sibb |
Fab
Dob |
Dob
Solb |
Reb
Lab |
Mib
Sib |
Fa
Do |
Do
Sol |
Re
La |
Mi
Si |
Fa#
Do# |
Do#
Sol# |
Re#
La# |
Mi#
Si# |
d3 | d4 | d5 | d2 | m3 | P4 | P1 | P2 | M3 | A4 | A1 | A2 | A3 |
Modes
The mode names are based on the species of fifth:
Mode | Scale | UDP | Interval type | ||
---|---|---|---|---|---|
name | pattern | notation | 2nd | 3rd | 4th |
Lydian | LLLs | 3|0 | P | M | A |
Major | LLsL | 2|1 | P | M | P |
Minor | LLsL | 1|2 | P | m | P |
Phrygian | sLLL | 0|3 | d | m | P |
Temperaments
The most basic rank-2 temperament interpretation of diatonic is Napoli. The name "Napoli" comes from the “Neapolitan” sixth triad spelled root-(p-2g)-(2p-3g)
(p = 3/2, g = the whole tone) which serves as its minor triad approximating 5:6:8 in pental interpretations or 18:21:28 in septimal ones. Basic ~7edf fits both interpretations.
Napoli-Meantone
Subgroup: 3/2.6/5.8/5
Mapping: [⟨1 1 2], ⟨0 -2 -3]]
Napoli-Superpyth
Subgroup: 3/2.7/6.14/9
Mapping: [⟨1 1 2], ⟨0 -2 -3]]
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments | |||
---|---|---|---|---|---|---|---|---|
Normalised | ed7\12 | |||||||
1\4 | 171.428… | 175 | 1 | 1 | 1.000 | Equalised | ||
6\23 | 180 | 182.608… | 6 | 5 | 1.200 | |||
11\42 | 180.821… | 183.3 | 11 | 9 | 1.222 | |||
5\19 | 181.81 | 184.210… | 5 | 4 | 1.250 | |||
14\53 | 182.608… | 184.905… | 14 | 11 | 1.273 | |||
9\34 | 183.050… | 185.294… | 9 | 7 | 1.286 | |||
4\15 | 184.615… | 186.6 | 4 | 3 | 1.333 | |||
11\41 | 185.915… | 187.804… | 11 | 8 | 1.375 | |||
7\26 | 186.6 | 188.461… | 7 | 5 | 1.400 | |||
10\37 | 187.5 | 189.189 | 10 | 7 | 1.429 | |||
13\48 | 187.951… | 189.583 | 13 | 9 | 1.444 | |||
16\59 | 188.235… | 189.830… | 16 | 11 | 1.4545 | |||
3\11 | 189.473… | 190.90 | 3 | 2 | 1.500 | Napoli-Meantone starts here | ||
14\51 | 190.90 | 192.156… | 14 | 9 | 1.556 | |||
11\40 | 191.304… | 192.5 | 11 | 7 | 1.571 | |||
8\29 | 192 | 193.103… | 8 | 5 | 1.600 | |||
5\18 | 193.548… | 194.4 | 5 | 3 | 1.667 | |||
12\43 | 194.594 | 195.348… | 12 | 7 | 1.714 | |||
7\25 | 195.348… | 196 | 7 | 4 | 1.750 | |||
9\32 | 196.36 | 196.875 | 9 | 5 | 1.800 | |||
11\39 | 197.014… | 197.435… | 11 | 6 | 1.833 | |||
13\46 | 197.468… | 197.826… | 13 | 7 | 1.857 | |||
15\53 | 197.802… | 198.113… | 15 | 8 | 1.875 | |||
17\60 | 198.058… | 198.3 | 17 | 9 | 1.889 | |||
19\67 | 198.260… | 198.507… | 19 | 10 | 1.900 | |||
21\74 | 198.425… | 198.648 | 21 | 11 | 1.909 | |||
23\81 | 198.561… | 198.765… | 23 | 12 | 1.917 | |||
25\88 | 198.675… | 198.863 | 25 | 13 | 1.923 | |||
27\95 | 198.773… | 198.947… | 27 | 14 | 1.929 | |||
29\102 | 198.857… | 199.019… | 29 | 15 | 1.933 | |||
31\109 | 198.930… | 199.082… | 31 | 16 | 1.9375 | |||
33\116 | 198.994… | 199.137… | 33 | 17 | 1.941 | |||
35\123 | 199.052… | 199.186… | 35 | 18 | 1.944 | |||
2\7 | 200 | 200 | 2 | 1 | 2.000 | Napoli-Meantone ends, Napoli-Pythagorean begins | ||
17\59 | 201.980… | 201.694… | 17 | 8 | 2.125 | |||
15\52 | 202.247… | 201.923… | 15 | 7 | 2.143 | |||
13\45 | 202.597… | 202.2 | 13 | 6 | 2.167 | |||
11\38 | 203.076… | 202.631… | 11 | 5 | 2.200 | |||
9\31 | 203.773… | 203.225… | 9 | 4 | 2.250 | |||
7\24 | 204.878… | 204.16 | 7 | 3 | 2.333 | |||
12\41 | 205.714… | 204.878… | 12 | 5 | 2.400 | |||
5\17 | 206.896… | 205.882… | 5 | 2 | 2.500 | Napoli-Neogothic heartland is from here… | ||
18\61 | 207.692… | 206.557… | 18 | 7 | 2.571 | |||
13\44 | 208 | 206.81 | 13 | 5 | 2.600 | |||
8\27 | 208.695… | 207.407 | 8 | 3 | 2.667 | …to here | ||
11\37 | 209.523… | 208.108 | 11 | 4 | 2.750 | |||
14\47 | 210 | 208.510… | 14 | 5 | 2.800 | |||
17\57 | 210.309… | 208.771… | 17 | 6 | 2.833 | |||
20\67 | 210.526… | 208.955… | 20 | 7 | 2.857 | |||
23\77 | 210.687… | 209.09 | 23 | 8 | 2.875 | |||
3\10 | 211.764… | 210 | 3 | 1 | 3.000 | Napoli-Pythagorean ends, Napoli-Superpyth begins | ||
22\73 | 212.903… | 210.958… | 22 | 7 | 3.143 | |||
19\63 | 213.084… | 211.1 | 19 | 6 | 3.167 | |||
16\53 | 213.3 | 211.320… | 16 | 5 | 3.200 | |||
13\43 | 213.698… | 211.627… | 13 | 4 | 3.250 | |||
10\33 | 214.285… | 212.12 | 10 | 3 | 3.333 | |||
7\23 | 215.384… | 213.043… | 7 | 2 | 3.500 | |||
11\36 | 216.393… | 213.3 | 11 | 3 | 3.667 | |||
15\49 | 216.867… | 214.285… | 15 | 4 | 3.750 | |||
4\13 | 218.18 | 215.385… | 4 | 1 | 4.000 | |||
13\42 | 219.718… | 216.6 | 13 | 3 | 4.333 | |||
9\29 | 220.408… | 217.241… | 9 | 2 | 4.500 | |||
14\45 | 221.052… | 217.7 | 14 | 3 | 4.667 | |||
5\16 | 222.2 | 218.75 | 5 | 1 | 5.000 | Napoli-Superpyth ends | ||
16\51 | 223.255… | 219.607… | 16 | 3 | 5.333 | |||
11\35 | 223.728… | 220 | 11 | 2 | 5.500 | |||
17\54 | 224.175… | 220.370 | 17 | 3 | 5.667 | |||
6\19 | 225 | 221.052… | 6 | 1 | 6.000 | |||
1\3 | 240 | 233.3 | 1 | 0 | → inf | Paucitonic |