231edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
Xenwolf (talk | contribs)
Line 9: Line 9:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |Subgroup
! rowspan="2" | Subgroup
! rowspan="2" |[[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" |[[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" |Optimal
! rowspan="2" | Optimal <br> 8ve stretch (¢)
8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" |Tuning error
|-
|-
![[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
! [[TE simple badness|Relative]] (%)
|-
|-
|2.3.5
| 2.3.5
|15625/15552, [-64, 36, 3⟩
| 15625/15552, [-64, 36, 3⟩
|[{{val|231 366 536}}]
| [{{val|231 366 536}}]
|0.410
| 0.410
|0.334
| 0.334
|6.43
| 6.43
|-
|-
|2.3.5.7
| 2.3.5.7
|1029/1024, 15625/15552, 823543/820125
| 1029/1024, 15625/15552, 823543/820125
|[{{val|231 366 536 648}}]
| [{{val|231 366 536 648}}]
|0.539
| 0.539
|0.365
| 0.365
|7.01
| 7.01
|-
|-
|2.3.5.7.11
| 2.3.5.7.11
|385/384, 441/440, 14700/14641, 2460375/2458624
| 385/384, 441/440, 14700/14641, 2460375/2458624
|[{{val|231 366 536 648 799}}]
| [{{val|231 366 536 648 799}}]
|0.469
| 0.469
|0.354
| 0.354
|6.81
| 6.81
|}
|}



Revision as of 12:29, 16 March 2022

The 231 equal temperament divides the octave into 231 equal parts of 5.195 cents each.

Theory

Approximation of odd harmonics in 231edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.66 -1.90 -2.59 -1.31 -0.67 +1.03 -2.55 -1.06 -1.41 +1.95 +0.30
Relative (%) -12.6 -36.5 -49.9 -25.3 -12.9 +19.8 -49.2 -20.4 -27.1 +37.5 +5.7
Steps
(reduced)
366
(135)
536
(74)
648
(186)
732
(39)
799
(106)
855
(162)
902
(209)
944
(20)
981
(57)
1015
(91)
1045
(121)

In the 5-limit it tempers out the kleisma, 15625/15552, and in the 7-limit 1029/1024, so that it supports tritikleismic temperament, and in fact provides the optimal patent val. In the 11-limit it tempers out 385/384, 441/440 and 4000/3993, leading to 11-limit tritikleismic for which it also gives the optimal patent val.

231 years is the number of years in a 41 out of 231 leap week cycle, which corresponds to a 41 & 149 temperament tempering out 132055/131072, 166375/165888, and 2460375/2458624. This type of solar calendar leap rule scale may actually be of more use to harmony, since a 41 note subset mimics 41edo, a rather useful EDO harmonically, and it preserves the simple commas mentioned above - see here.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 15625/15552, [-64, 36, 3⟩ [231 366 536]] 0.410 0.334 6.43
2.3.5.7 1029/1024, 15625/15552, 823543/820125 [231 366 536 648]] 0.539 0.365 7.01
2.3.5.7.11 385/384, 441/440, 14700/14641, 2460375/2458624 [231 366 536 648 799]] 0.469 0.354 6.81

Rank two temperaments by generator

Periods
per octave
Generator Cents Associated
ratio
Temperaments
1 62\231 322.08 Dee / Iranian Leap Week
3 61\231
(16\231)
316.88
(83.12)
6/5 Tritrikleismic

References

https://individual.utoronto.ca/kalendis/leap/index.htm