231edo: Difference between revisions
m →Rank two temperaments by generator: formatting |
m →Regular temperament properties: formatting |
||
Line 9: | Line 9: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |Subgroup | ! rowspan="2" | Subgroup | ||
! rowspan="2" |[[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal | ! rowspan="2" | Optimal <br> 8ve stretch (¢) | ||
8ve stretch (¢) | ! colspan="2" | Tuning error | ||
! colspan="2" |Tuning error | |||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|15625/15552, [-64, 36, 3⟩ | | 15625/15552, [-64, 36, 3⟩ | ||
|[{{val|231 366 536}}] | | [{{val|231 366 536}}] | ||
|0.410 | | 0.410 | ||
|0.334 | | 0.334 | ||
|6.43 | | 6.43 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|1029/1024, 15625/15552, 823543/820125 | | 1029/1024, 15625/15552, 823543/820125 | ||
|[{{val|231 366 536 648}}] | | [{{val|231 366 536 648}}] | ||
|0.539 | | 0.539 | ||
|0.365 | | 0.365 | ||
|7.01 | | 7.01 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|385/384, 441/440, 14700/14641, 2460375/2458624 | | 385/384, 441/440, 14700/14641, 2460375/2458624 | ||
|[{{val|231 366 536 648 799}}] | | [{{val|231 366 536 648 799}}] | ||
|0.469 | | 0.469 | ||
|0.354 | | 0.354 | ||
|6.81 | | 6.81 | ||
|} | |} | ||
Revision as of 12:29, 16 March 2022
The 231 equal temperament divides the octave into 231 equal parts of 5.195 cents each.
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.66 | -1.90 | -2.59 | -1.31 | -0.67 | +1.03 | -2.55 | -1.06 | -1.41 | +1.95 | +0.30 |
Relative (%) | -12.6 | -36.5 | -49.9 | -25.3 | -12.9 | +19.8 | -49.2 | -20.4 | -27.1 | +37.5 | +5.7 | |
Steps (reduced) |
366 (135) |
536 (74) |
648 (186) |
732 (39) |
799 (106) |
855 (162) |
902 (209) |
944 (20) |
981 (57) |
1015 (91) |
1045 (121) |
In the 5-limit it tempers out the kleisma, 15625/15552, and in the 7-limit 1029/1024, so that it supports tritikleismic temperament, and in fact provides the optimal patent val. In the 11-limit it tempers out 385/384, 441/440 and 4000/3993, leading to 11-limit tritikleismic for which it also gives the optimal patent val.
231 years is the number of years in a 41 out of 231 leap week cycle, which corresponds to a 41 & 149 temperament tempering out 132055/131072, 166375/165888, and 2460375/2458624. This type of solar calendar leap rule scale may actually be of more use to harmony, since a 41 note subset mimics 41edo, a rather useful EDO harmonically, and it preserves the simple commas mentioned above - see here.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | 15625/15552, [-64, 36, 3⟩ | [⟨231 366 536]] | 0.410 | 0.334 | 6.43 |
2.3.5.7 | 1029/1024, 15625/15552, 823543/820125 | [⟨231 366 536 648]] | 0.539 | 0.365 | 7.01 |
2.3.5.7.11 | 385/384, 441/440, 14700/14641, 2460375/2458624 | [⟨231 366 536 648 799]] | 0.469 | 0.354 | 6.81 |
Rank two temperaments by generator
Periods per octave |
Generator | Cents | Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 62\231 | 322.08 | Dee / Iranian Leap Week | |
3 | 61\231 (16\231) |
316.88 (83.12) |
6/5 | Tritrikleismic |