Quince clan: Difference between revisions
Jump to navigation
Jump to search
m fix heading |
No-3 quince now has a name |
||
Line 8: | Line 8: | ||
* [[Porwell temperaments #Countermiracle|Countermiracle]] ({6144/6125, 50421/50000}) | * [[Porwell temperaments #Countermiracle|Countermiracle]] ({6144/6125, 50421/50000}) | ||
== | == Mercy == | ||
Two generators make an [[8/7]]; five generators make a [[7/5]] | Mercy is the no-3 version of miracle. Two generators make an [[8/7]]; five generators make a [[7/5]]. | ||
Subgroup: 2.5.7 | Subgroup: 2.5.7 | ||
Line 29: | Line 29: | ||
[[Category:Regular temperament theory]] | [[Category:Regular temperament theory]] | ||
[[Category:Temperament clan]] | [[Category:Temperament clan]] | ||
[[Category:Quince]] | [[Category:Quince clan| ]] <!-- main article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Revision as of 12:23, 15 September 2021
The quince clan tempers out quince, the no-threes comma [-15 0 -2 7⟩ = 823543/819200. Quince temperaments include:
- Casablanca ({126/125, 589824/588245})
- Miracle ({225/224, 1029/1024})
- Quincy ({4375/4374, 823543/819200})
- Birds ({3136/3125, 823543/819200})
- Octowerck ({321489/320000, 420175/419904})
- Cotoneum ({10976/10935, 823543/819200})
- Countermiracle ({6144/6125, 50421/50000})
Mercy
Mercy is the no-3 version of miracle. Two generators make an 8/7; five generators make a 7/5.
Subgroup: 2.5.7
Comma list: 823543/819200
Sval mapping: [⟨1 3 3], ⟨0 -7 -2]]
Mapping generators: ~2, ~343/320
Gencom mapping: [⟨1 0 3 3], ⟨0 0 -7 -2]]
Gencom: [2 343/320; 823543/819200]
POTE generator: ~343/320 = 116.291