User:FloraC/Temperament name proposal: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Update
No edit summary
Line 5: Line 5:
* Lux (41 & 46 & 270) named in cooperation with Godtone
* Lux (41 & 46 & 270) named in cooperation with Godtone
* Luminal (183 & 311)
* Luminal (183 & 311)
* Superlimmal (80 & 311)


= 22 & 46 & 72 =
== 22 & 46 & 72 ==
An 11-limit rank-3 temperament. Announced in FB group. <s>To be called "quasiquarter"</s> I don't like this name.  
An 11-limit rank-3 temperament. Announced in FB group. <s>To be called "quasiquarter"</s> I don't like this name.  


It tempers out 1500625/1492992 = {{monzo| -11 -6 4 4 }} in the 7-limit, and the keenanisma, [[385/384]], the kalisma, [[9801/9800]], as well as the [[Alpharabian comma]], 131769/131072 = {{monzo| -17 2 0 0 4 }}, in the 11-limit.  
It tempers out 1500625/1492992 = {{monzo| -11 -6 4 4 }} in the 7-limit, and the keenanisma, [[385/384]], the kalisma, [[9801/9800]], as well as the [[Alpharabian comma]], 131769/131072 = {{monzo| -17 2 0 0 4 }}, in the 11-limit. It features splitting the whole tone into four equal parts, each representing 36/35~33/32. Therefore, it is most valuable for those who would like to make extensive use of quartertones. It can be viewed as one which is joined by the three quartertone-sized edos: [[22edo]], [[24edo]], and [[26edo]]. It shares the [[optimal patent val]], [[284edo]] with [[Keenanismic family|keenanismic]].  


It features splitting the whole tone into four equal parts, each representing 36/35~33/32. Therefore, it is most valuable for those who would like to make extensive use of quartertones.
=== 7-limit ===
 
Subgroup: 2.3.5.7
It can be viewed as one which is joined by the three quartertone-sized edos: [[22edo]], [[24edo]], and [[26edo]]. It shares the [[optimal patent val]], [[284edo]] with [[Keenanismic family|keenanismic]].
 
== 7-limit ==


[[Comma list]]: 1500625/1492992
[[Comma list]]: 1500625/1492992


[[Mapping]]: [<2 1 0 7|, <0 2 0 3|, <0 0 1 -1|]
[[Mapping]]: [{{val| 2 1 0 7 }}, {{val| 0 2 0 3 }}, {{val| 0 0 1 -1 }}]


Mapping generators: ~1225/864, ~35/24, ~5
Mapping generators: ~1225/864, ~35/24, ~5
Line 31: Line 29:
[[Badness]]: 0.7042 × 10<sup>-3</sup>
[[Badness]]: 0.7042 × 10<sup>-3</sup>


== 11-limit ==
=== 11-limit ===
Subgroup: 2.3.5.7.11


Comma list: 385/384, 9801/9800
[[Comma list]]: 385/384, 9801/9800


Mapping: [<2 1 0 7 8|, <0 2 0 3 -1|, <0 0 1 -1 0|]
[[Mapping]]: [{{val| 2 1 0 7 8 }}, {{val| 0 2 0 3 -1 }}, {{val| 0 0 1 -1 0 }}]


Mapping generators: ~99/70, ~16/11, ~5
Mapping generators: ~99/70, ~16/11, ~5


POTE generators: ~33/32 = 50.7404 or ~11/8 = 549.2596, ~5/4 = 385.0315
[[POTE generator]]s: ~33/32 = 50.7404 or ~11/8 = 549.2596, ~5/4 = 385.0315


Vals: {{val list| 22, 46, 68, 72, 118, 190, 212, 284, 330e }}
{{Val list|legend=1| 22, 46, 68, 72, 118, 190, 212, 284, 330e }}


Badness: 0.5292 × 10<sup>-3</sup>
[[Badness]]: 0.5292 × 10<sup>-3</sup>


= 87 & 94 & 111 =
== 87 & 94 & 111 ==
An unnamed 13-limit rank-3 temperament.  
An unnamed 13-limit rank-3 temperament.  
Subgroup: 2.3.5.7.11


[[Comma list]]: 352/351, 847/845, 14641/14580
[[Comma list]]: 352/351, 847/845, 14641/14580


[[Mapping]]: [<1 0 2 12 1 6|, <0 1 2 -4 2 -1|, <0 0 4 4 1 1|]
[[Mapping]]: [{{val| 1 0 2 12 1 6 }}, {{val| 0 1 2 -4 2 -1 }}, {{val| 0 0 4 4 1 1 }}]


{{Val list|legend=1| 7, 17c, 24d, 87, 111, 181, 198 }}
{{Val list|legend=1| 7, 17c, 24d, 87, 111, 181, 198 }}
Line 56: Line 57:
[[Badness]]: 0.0540 × 10<sup>-3</sup>
[[Badness]]: 0.0540 × 10<sup>-3</sup>


= 41 & 46 & 53 & 58 =
== 41 & 46 & 53 & 58 ==
An unnamed 13-limit rank-4 temperament.  
An unnamed 13-limit rank-4 temperament.  
Subgroup: 2.3.5.7.11.13


[[Comma list]]: 352/351, 847/845
[[Comma list]]: 352/351, 847/845


[[Mapping]]: [<1 0 0 10 0 5|, <0 1 0 -6 0 -3|, <0 0 1 1 0 0|, <0 0 0 0 1 1|]
[[Mapping]]: [{{val| 1 0 0 10 0 5 }}, {{val| 0 1 0 -6 0 -3 }}, {{val| 0 0 1 1 0 0 }}, {{val| 0 0 0 0 1 1 }}]


{{Multival|legend=1|rank=4| 0 1 1 1 1 0 6 6 -3 -3 10 10 -5 -5 0 }}
{{Multival|legend=1|rank=4| 0 1 1 1 1 0 6 6 -3 -3 10 10 -5 -5 0 }}


POTE generators: ~3/2 = 702.9075, ~5/4 = 387.0723, ~11/8 = 551.4538
[[POTE generator]]s: ~3/2 = 702.9075, ~5/4 = 387.0723, ~11/8 = 551.4538


{{Val list|legend=1| 12f, 17c, 29, 41, 46, 53, 58, 87, 111, 140, 198 }}
{{Val list|legend=1| 12f, 17c, 29, 41, 46, 53, 58, 87, 111, 140, 198 }}


[[Badness]]: 2.550 × 10<sup>-6</sup>
[[Badness]]: 2.550 × 10<sup>-6</sup>

Revision as of 06:03, 12 June 2021

Ideas welcome!

  • Canou (94 & 99 & 118) and various extensions
  • Semicanousmic (14641/14580)
  • Lux (41 & 46 & 270) named in cooperation with Godtone
  • Luminal (183 & 311)
  • Superlimmal (80 & 311)

22 & 46 & 72

An 11-limit rank-3 temperament. Announced in FB group. To be called "quasiquarter" I don't like this name.

It tempers out 1500625/1492992 = [-11 -6 4 4 in the 7-limit, and the keenanisma, 385/384, the kalisma, 9801/9800, as well as the Alpharabian comma, 131769/131072 = [-17 2 0 0 4, in the 11-limit. It features splitting the whole tone into four equal parts, each representing 36/35~33/32. Therefore, it is most valuable for those who would like to make extensive use of quartertones. It can be viewed as one which is joined by the three quartertone-sized edos: 22edo, 24edo, and 26edo. It shares the optimal patent val, 284edo with keenanismic.

7-limit

Subgroup: 2.3.5.7

Comma list: 1500625/1492992

Mapping: [2 1 0 7], 0 2 0 3], 0 0 1 -1]]

Mapping generators: ~1225/864, ~35/24, ~5

Wedgie⟨⟨⟨ 4 -4 -6 11 ]]]

POTE generators: ~36/35 = 50.9529 or ~48/35 = 549.0471, ~5/4 = 385.3326

Template:Val list

Badness: 0.7042 × 10-3

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 9801/9800

Mapping: [2 1 0 7 8], 0 2 0 3 -1], 0 0 1 -1 0]]

Mapping generators: ~99/70, ~16/11, ~5

POTE generators: ~33/32 = 50.7404 or ~11/8 = 549.2596, ~5/4 = 385.0315

Template:Val list

Badness: 0.5292 × 10-3

87 & 94 & 111

An unnamed 13-limit rank-3 temperament.

Subgroup: 2.3.5.7.11

Comma list: 352/351, 847/845, 14641/14580

Mapping: [1 0 2 12 1 6], 0 1 2 -4 2 -1], 0 0 4 4 1 1]]

Template:Val list

Badness: 0.0540 × 10-3

41 & 46 & 53 & 58

An unnamed 13-limit rank-4 temperament.

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 847/845

Mapping: [1 0 0 10 0 5], 0 1 0 -6 0 -3], 0 0 1 1 0 0], 0 0 0 0 1 1]]

Wedgie⟨⟨⟨⟨ 0 1 1 1 1 0 6 6 -3 -3 10 10 -5 -5 0 ]]]]

POTE generators: ~3/2 = 702.9075, ~5/4 = 387.0723, ~11/8 = 551.4538

Template:Val list

Badness: 2.550 × 10-6