|
|
Line 1: |
Line 1: |
| =62 tone equal temperament=
| | '''62edo''' divides the octave into 62 equal parts of 19.35484 cents each. |
|
| |
|
| <b>62edo</b> divides the octave into 62 equal parts of 19.35484 cents each. 62 = 2 * 31 and the patent val is a contorted 31edo through the 11-limit; in the 13-limit it tempers out 169/168, 1188/1183, 847/845 and 676/675. It provides the optimal patent val for [[31_comma_temperaments#Gallium|gallium]], [[Starling_temperaments#Valentine temperament-Semivalentine|semivalentine]] and [[Meantone_family#Septimal meantone-Unidecimal meantone aka Huygens-Hemimeantone|hemimeantone]] temperaments.
| | 62 = 2 × 31 and the [[patent val]] is a contorted [[31edo]] through the 11-limit; in the 13-limit it tempers out [[169/168]], [[1188/1183]], [[847/845]] and [[676/675]]. It provides the [[optimal patent val]] for [[31 comma temperaments #Gallium|gallium]], [[Starling temperaments #Valentine|semivalentine]] and [[Meantone family #Septimal meantone|hemimeantone]] temperaments. |
|
| |
|
| Using the 35\62 generator, which leads to the <62 97 143 173| val, 62edo is also an excellent tuning for septimal mavila temperament; alternatively <62 97 143 172| supports hornbostel. | | Using the 35\62 generator, which leads to the {{val| 62 97 143 173 }} val, 62edo is also an excellent tuning for septimal mavila temperament; alternatively {{val| 62 97 143 172 }} supports hornbostel. |
|
| |
|
| ==='''62-EDO Intervals'''=== | | == Intervals == |
|
| |
|
| {| class="wikitable" | | {| class="wikitable" |
| |- | | |- |
| | | '''ARMODUE NOMENCLATURE 8;3 RELATION'''
| | ! ARMODUE NOMENCLATURE 8;3 RELATION |
| |- | | |- |
| | | <ul><li>'''Ɨ''' = Thick (1/8-tone up)</li><li>'''‡''' = Semisharp (1/4-tone up)</li><li>'''b''' = Flat (5/8-tone down)</li><li>'''◊''' = Node (sharp/flat blindspot 1/2-tone)</li><li>'''#''' = Sharp (5/8-tone up)</li><li>'''v''' = Semiflat (1/4-tone down)</li><li>'''⌐''' = Thin (1/8-tone down)</li></ul>
| | | <ul><li>'''Ɨ''' = Thick (1/8-tone up)</li><li>'''‡''' = Semisharp (1/4-tone up)</li><li>'''b''' = Flat (5/8-tone down)</li><li>'''◊''' = Node (sharp/flat blindspot 1/2-tone)</li><li>'''#''' = Sharp (5/8-tone up)</li><li>'''v''' = Semiflat (1/4-tone down)</li><li>'''⌐''' = Thin (1/8-tone down)</li></ul> |
| |} | | |} |
|
| |
|
| {| class="wikitable" | | {| class="wikitable center-1 right-2" |
| |- | | |- |
| ! [[Degree|Degree]] | | ! # |
| ![[cent|Cents]] | | ! [[Cent]]s |
| ! Armodue notation | | ! Armodue notation |
| ! Approximate intervals | | ! Approximate intervals |
| |- | | |- |
| | style="text-align:center;" | 0
| | | 0 |
| | style="text-align:right;" | 0.0000
| | | 0.000 |
| | style="text-align:center;" | 1
| | | 1 |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 1
| | | 1 |
| | style="text-align:right;" | 19.3548
| | | 19.355 |
| | style="text-align:center;" | 1Ɨ
| | | 1Ɨ |
| | | 90/89
| | | 90/89 |
| |- | | |- |
| | style="text-align:center;" | 2
| | | 2 |
| | style="text-align:right;" | 38.7097
| | | 38.710 |
| | style="text-align:center;" | 1‡ (9#)
| | | 1‡ (9#) |
| | | 45/44
| | | 45/44 |
| |- | | |- |
| | style="text-align:center;" | 3
| | | 3 |
| | style="text-align:right;" | 58.0645
| | | 58.065 |
| | style="text-align:center;" | 2b
| | | 2b |
| | | 30/29
| | | 30/29 |
| |- | | |- |
| | style="text-align:center;" | 4
| | | 4 |
| | style="text-align:right;" | 77.41935
| | | 77.419 |
| | style="text-align:center;" | 1◊2
| | | 1◊2 |
| | | 23/22
| | | 23/22 |
| |- | | |- |
| | style="text-align:center;" | 5
| | | 5 |
| | style="text-align:right;" | 96.7742
| | | 96.774 |
| | style="text-align:center;" | 1#
| | | 1# |
| | | 37/35, 18/17, 19/18
| | | 37/35, 18/17, 19/18 |
| |- | | |- |
| | style="text-align:center;" | 6
| | | 6 |
| | style="text-align:right;" | 116.129
| | | 116.129 |
| | style="text-align:center;" | 2v
| | | 2v |
| | | 31/29, 15/14, 16/15
| | | 31/29, 15/14, 16/15 |
| |- | | |- |
| | style="text-align:center;" | 7
| | | 7 |
| | style="text-align:right;" | 135.4839
| | | 135.484 |
| | style="text-align:center;" | 2⌐
| | | 2⌐ |
| | | 27/25, 13/12, 14/13
| | | 27/25, 13/12, 14/13 |
| |- | | |- |
| | style="text-align:center;" | 8
| | | 8 |
| | style="text-align:right;" | 154.8387
| | | 154.839 |
| | style="text-align:center;" | 2
| | | 2 |
| | | 12/11
| | | 12/11 |
| |- | | |- |
| | style="text-align:center;" | 9
| | | 9 |
| | style="text-align:right;" | 174.19355
| | | 174.194 |
| | style="text-align:center;" | 2Ɨ
| | | 2Ɨ |
| | | 11/10
| | | 11/10 |
| |- | | |- |
| | style="text-align:center;" | 10
| | | 10 |
| | style="text-align:right;" | 193.5484
| | | 193.548 |
| | style="text-align:center;" | 2‡
| | | 2‡ |
| | | 19/17, 9/8, 10/9
| | | 19/17, 9/8, 10/9 |
| |- | | |- |
| | style="text-align:center;" | 11
| | | 11 |
| | style="text-align:right;" | 212.9032
| | | 212.903 |
| | style="text-align:center;" | 3b
| | | 3b |
| | | 17/15, 9/8
| | | 17/15, 9/8 |
| |- | | |- |
| | style="text-align:center;" | 12
| | | 12 |
| | style="text-align:right;" | 232.2581
| | | 232.258 |
| | style="text-align:center;" | 2◊3
| | | 2◊3 |
| | | 8/7
| | | 8/7 |
| |- | | |- |
| | style="text-align:center;" | 13
| | | 13 |
| | style="text-align:right;" | 251.6129
| | | 251.613 |
| | style="text-align:center;" | 2#
| | | 2# |
| | | 15/13
| | | 15/13 |
| |- | | |- |
| | style="text-align:center;" | 14
| | | 14 |
| | style="text-align:right;" | 270.9677
| | | 270.968 |
| | style="text-align:center;" | 3v
| | | 3v |
| | | 7/6
| | | 7/6 |
| |- | | |- |
| | style="text-align:center;" | 15
| | | 15 |
| | style="text-align:right;" | 290.3226
| | | 290.323 |
| | style="text-align:center;" | 3⌐
| | | 3⌐ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 16
| | | 16 |
| | style="text-align:right;" | 309.6774
| | | 309.677 |
| | style="text-align:center;" | 3
| | | 3 |
| | | 6/5
| | | 6/5 |
| |- | | |- |
| | style="text-align:center;" | 17
| | | 17 |
| | style="text-align:right;" | 329.0323
| | | 329.032 |
| | style="text-align:center;" | 3Ɨ
| | | 3Ɨ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 18
| | | 18 |
| | style="text-align:right;" | 348.3871
| | | 348.387 |
| | style="text-align:center;" | 3‡
| | | 3‡ |
| | | 11/9
| | | 11/9 |
| |- | | |- |
| | style="text-align:center;" | 19
| | | 19 |
| | style="text-align:right;" | 367.7419
| | | 367.742 |
| | style="text-align:center;" | 4b
| | | 4b |
| | | ·
| | | · |
| |- | | |- |
| | style="text-align:center;" | 20
| | | 20 |
| | style="text-align:right;" | 387.0968
| | | 387.097 |
| | style="text-align:center;" | 3◊4
| | | 3◊4 |
| | | 5/4
| | | 5/4 |
| |- | | |- |
| | style="text-align:center;" | 21
| | | 21 |
| | style="text-align:right;" | 406.4516
| | | 406.452 |
| | style="text-align:center;" | 3#
| | | 3# |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 22
| | | 22 |
| | style="text-align:right;" | 425.80645
| | | 425.806 |
| | style="text-align:center;" | 4v (5b)
| | | 4v (5b) |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 23
| | | 23 |
| | style="text-align:right;" | 445.1613
| | | 445.161 |
| | style="text-align:center;" | 4⌐
| | | 4⌐ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 24
| | | 24 |
| | style="text-align:right;" | 464.5161
| | | 464.516 |
| | style="text-align:center;" | 4
| | | 4 |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 25
| | | 25 |
| | style="text-align:right;" | 483.871
| | | 483.871 |
| | style="text-align:center;" | 4Ɨ (5v)
| | | 4Ɨ (5v) |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 26
| | | 26 |
| | style="text-align:right;" | 503.2258
| | | 503.226 |
| | style="text-align:center;" | 5⌐ (4‡)
| | | 5⌐ (4‡) |
| | | 4/3
| | | 4/3 |
| |- | | |- |
| | style="text-align:center;" | 27
| | | 27 |
| | style="text-align:right;" | 522.58065
| | | 522.581 |
| | style="text-align:center;" | 5
| | | 5 |
| | | ·
| | | · |
| |- | | |- |
| | style="text-align:center;" | 28
| | | 28 |
| | style="text-align:right;" | 541.9355
| | | 541.935 |
| | style="text-align:center;" | 5Ɨ
| | | 5Ɨ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 29
| | | 29 |
| | style="text-align:right;" | 561.2903
| | | 561.290 |
| | style="text-align:center;" | 5‡ (4#)
| | | 5‡ (4#) |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 30
| | | 30 |
| | style="text-align:right;" | 580.6452
| | | 580.645 |
| | style="text-align:center;" | 6b
| | | 6b |
| | | 7/5
| | | 7/5 |
| |- | | |- |
| | style="text-align:center;" | 31
| | | 31 |
| | style="text-align:right;" | 600
| | | 600.000 |
| | style="text-align:center;" | 5◊6
| | | 5◊6 |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 32
| | | 32 |
| | style="text-align:right;" | 619.3548
| | | 619.355 |
| | style="text-align:center;" | 5#
| | | 5# |
| | | 10/7
| | | 10/7 |
| |- | | |- |
| | style="text-align:center;" | 33
| | | 33 |
| | style="text-align:right;" | 638.7097
| | | 638.710 |
| | style="text-align:center;" | 6v
| | | 6v |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 34
| | | 34 |
| | style="text-align:right;" | 658.0645
| | | 658.065 |
| | style="text-align:center;" | 6⌐
| | | 6⌐ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 35
| | | 35 |
| | style="text-align:right;" | 677.41935
| | | 677.419 |
| | style="text-align:center;" | 6
| | | 6 |
| | | ·
| | | · |
| |- | | |- |
| | style="text-align:center;" | 36
| | | 36 |
| | style="text-align:right;" | 696.7742
| | | 696.774 |
| | style="text-align:center;" | 6Ɨ
| | | 6Ɨ |
| | |3/2 | | | |3/2 |
| |- | | |- |
| | style="text-align:center;" | 37
| | | 37 |
| | style="text-align:right;" | 716.129
| | | 716.129 |
| | style="text-align:center;" | 6‡
| | | 6‡ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 38
| | | 38 |
| | style="text-align:right;" | 735.4839
| | | 735.484 |
| | style="text-align:center;" | 7b
| | | 7b |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 39
| | | 39 |
| | style="text-align:right;" | 754.8387
| | | 754.839 |
| | style="text-align:center;" | 6◊7
| | | 6◊7 |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 40
| | | 40 |
| | style="text-align:right;" | 774.19355
| | | 774.194 |
| | style="text-align:center;" | 6#
| | | 6# |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 41
| | | 41 |
| | style="text-align:right;" | 793.5484
| | | 793.548 |
| | style="text-align:center;" | 7v
| | | 7v |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 42
| | | 42 |
| | style="text-align:right;" | 812.9032
| | | 812.903 |
| | style="text-align:center;" | 7⌐
| | | 7⌐ |
| | | 8/5
| | | 8/5 |
| |- | | |- |
| | style="text-align:center;" | 43
| | | 43 |
| | style="text-align:right;" | 832.2581
| | | 832.258 |
| | style="text-align:center;" | 7
| | | 7 |
| | | ·
| | | · |
| |- | | |- |
| | style="text-align:center;" | 44
| | | 44 |
| | style="text-align:right;" | 851.6129
| | | 851.613 |
| | style="text-align:center;" | 7Ɨ
| | | 7Ɨ |
| | | 18/11
| | | 18/11 |
| |- | | |- |
| | style="text-align:center;" | 45
| | | 45 |
| | style="text-align:right;" | 870.9677
| | | 870.968 |
| | style="text-align:center;" | 7‡
| | | 7‡ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 46
| | | 46 |
| | style="text-align:right;" | 890.3226
| | | 890.323 |
| | style="text-align:center;" | 8b
| | | 8b |
| | | 5/3
| | | 5/3 |
| |- | | |- |
| | style="text-align:center;" | 47
| | | 47 |
| | style="text-align:right;" | 909.6774
| | | 909.677 |
| | style="text-align:center;" | 7◊8
| | | 7◊8 |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 48
| | | 48 |
| | style="text-align:right;" | 929.0323
| | | 929.032 |
| | style="text-align:center;" | 7#
| | | 7# |
| | | 12/7
| | | 12/7 |
| |- | | |- |
| | style="text-align:center;" | 49
| | | 49 |
| | style="text-align:right;" | 948.3871
| | | 948.387 |
| | style="text-align:center;" | 8v
| | | 8v |
| | | 26/15
| | | 26/15 |
| |- | | |- |
| | style="text-align:center;" | 50
| | | 50 |
| | style="text-align:right;" | 967.7419
| | | 967.742 |
| | style="text-align:center;" | 8⌐
| | | 8⌐ |
| | | 7/4
| | | 7/4 |
| |- | | |- |
| | style="text-align:center;" | 51
| | | 51 |
| | style="text-align:right;" | 987.0968
| | | 987.097 |
| | style="text-align:center;" | 8
| | | 8 |
| | | 16/9
| | | 16/9 |
| |- | | |- |
| | style="text-align:center;" | 52
| | | 52 |
| | style="text-align:right;" | 1006.4516
| | | 1006.452 |
| | style="text-align:center;" | 8Ɨ
| | | 8Ɨ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 53
| | | 53 |
| | style="text-align:right;" | 1025.80645
| | | 1025.806 |
| | style="text-align:center;" | 8‡
| | | 8‡ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 54
| | | 54 |
| | style="text-align:right;" | 1045.1613
| | | 1045.161 |
| | style="text-align:center;" | 9b
| | | 9b |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 55
| | | 55 |
| | style="text-align:right;" | 1064.5161
| | | 1064.516 |
| | style="text-align:center;" | 8◊9
| | | 8◊9 |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 56
| | | 56 |
| | style="text-align:right;" | 1083.871
| | | 1083.871 |
| | style="text-align:center;" | 8#
| | | 8# |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 57
| | | 57 |
| | style="text-align:right;" | 1103.2258
| | | 1103.226 |
| | style="text-align:center;" | 9v (1b)
| | | 9v (1b) |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 58
| | | 58 |
| | style="text-align:right;" | 1122.58065
| | | 1122.581 |
| | style="text-align:center;" | 9⌐
| | | 9⌐ |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 59
| | | 59 |
| | style="text-align:right;" | 1141.9355
| | | 1141.936 |
| | style="text-align:center;" | 9
| | | 9 |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 60
| | | 60 |
| | style="text-align:right;" | 1161.2903
| | | 1161.290 |
| | style="text-align:center;" | 9Ɨ (1v)
| | | 9Ɨ (1v) |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 61
| | | 61 |
| | style="text-align:right;" | 1180.6452
| | | 1180.645 |
| | style="text-align:center;" | 1⌐ (9‡)
| | | 1⌐ (9‡) |
| | |
| | | |
| |- | | |- |
| | style="text-align:center;" | 62
| | | 62 |
| | style="text-align:right;" | 1200
| | | 1200.000 |
| | style="text-align:center;" | 1
| | | 1 |
| | |
| | | |
| |} | | |} |
| | |
| | [[Category:Equal divisions of the octave]] |