2edf: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''2EDF''', if the attempt is made to use it as an actual scale, would divide the just perfect fifth into two equal parts, each of size 350.9775 cents, which is to say sqr..." Tags: Mobile edit Mobile web edit |
No edit summary |
||
Line 6: | Line 6: | ||
2EDF is closely related to the [[Breedsmic temperaments|hemififths temperament]], which tempers out 2401/2400 and 5120/5103 in the 7-limit. | 2EDF is closely related to the [[Breedsmic temperaments|hemififths temperament]], which tempers out 2401/2400 and 5120/5103 in the 7-limit. | ||
== Intervals == | |||
{| class="wikitable" | |||
|+ | |||
! | |||
!ed31\54 | |||
!11/9-et | |||
!ed3/2 | |||
!Golden (~ed10\17) | |||
!ed34\57 | |||
|- | |||
|1 | |||
|344.444 | |||
|347.408 | |||
|350.9775 | |||
|352.928 | |||
|357.895 | |||
|- | |||
|2 | |||
|688.889 | |||
|694.816 | |||
|701.955 | |||
|705.8555 | |||
|715.7895 | |||
|- | |||
|3 | |||
|1033.333 | |||
|1042.224 | |||
|1052.9325 | |||
|1058.783 | |||
|1073.684 | |||
|- | |||
|4 | |||
|1377.778 | |||
|1389.632 | |||
|1403.91 | |||
|1411.711 | |||
|1431.579 | |||
|- | |||
|5 | |||
|1722.222 | |||
|1737.04 | |||
|1754.8875 | |||
|1764.639 | |||
|1789.474 | |||
|- | |||
|6 | |||
|2066.667 | |||
|2084.448 | |||
|2105.865 | |||
|2117.566 | |||
|2147.368 | |||
|- | |||
|7 | |||
|2411.111 | |||
|2431.186 | |||
|2456.8425 | |||
|2470.494 | |||
|2505.263 | |||
|} | |||
[[Category:Edf]] | [[Category:Edf]] | ||
[[Category:Edonoi]] | [[Category:Edonoi]] |
Revision as of 20:27, 20 February 2019
2EDF, if the attempt is made to use it as an actual scale, would divide the just perfect fifth into two equal parts, each of size 350.9775 cents, which is to say sqrt(3/2) as a frequency ratio. It corresponds to 3.4190 edo. If we want to consider it to be a temperament, it tempers out 6/5, 9/7, 32/27, and 81/80 in the patent val.
Factoids about 2EDF
60/49 and 49/40 are good rational representations of the square root of 3/2.
2EDF is closely related to the hemififths temperament, which tempers out 2401/2400 and 5120/5103 in the 7-limit.
Intervals
ed31\54 | 11/9-et | ed3/2 | Golden (~ed10\17) | ed34\57 | |
---|---|---|---|---|---|
1 | 344.444 | 347.408 | 350.9775 | 352.928 | 357.895 |
2 | 688.889 | 694.816 | 701.955 | 705.8555 | 715.7895 |
3 | 1033.333 | 1042.224 | 1052.9325 | 1058.783 | 1073.684 |
4 | 1377.778 | 1389.632 | 1403.91 | 1411.711 | 1431.579 |
5 | 1722.222 | 1737.04 | 1754.8875 | 1764.639 | 1789.474 |
6 | 2066.667 | 2084.448 | 2105.865 | 2117.566 | 2147.368 |
7 | 2411.111 | 2431.186 | 2456.8425 | 2470.494 | 2505.263 |