Trivial temperament: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>FREEZE
No edit summary
Xenwolf (talk | contribs)
added links; added categories
Line 1: Line 1:
A trivial temperament is something that fits the mathematical definition of "regular temperament", but is a unique, extreme case that people might be uncomfortable calling a "temperament". There are two kinds of trivial temperaments - JI, in which nothing is tempered, and '''OM''' temperament, in which everything is tempered.
A '''trivial temperament''' is something that fits the mathematical definition of "regular temperament", but is a unique, extreme case that people might be uncomfortable calling a "[[temperament]]". There are two kinds of trivial temperaments - JI, in which nothing is tempered, and '''OM''' temperament, in which everything is tempered.


Just intonation is a codimension-0 "temperament", which means nothing is tempered. The set of commas that are tempered out is the set {1/1}, but that's still a set, so JI is still a regular temperament. There is an infinite family of these "temperaments", one for each subgroup of JI. The 2-limit version is the equal temperament [[1edo|1edo]]. The 3-limit version is the rank-2 temperament [[Pythagorean|pythagorean]], which has all the properties of any other rank-2 temperament except that it tempers no commas. The 5-limit version is rank-3, and so on. The mapping for this temperament is an nxn identity matrix, with wedgies of <1|, <<1||, <<<1|||... .
Just intonation is a codimension-0 "temperament", which means nothing is tempered. The set of commas that are tempered out is the set {1/1}, but that's still a set, so JI is still a regular temperament. There is an infinite family of these "temperaments", one for each subgroup of JI. The [[2-limit]] version is the equal temperament [[1edo]]. The [[3-limit]] version is the rank-2 temperament [[pythagorean]], which has all the properties of any other rank-2 temperament except that it tempers no commas. The [[5-limit]] version is rank-3, and so on. The mapping for this temperament is an nxn identity matrix, with wedgies of <1|, <<1||, <<<1|||... .


'''OM''' temperament is the rank-0 temperament, in which every interval is a comma. Thus all notes are represented by the same note. This is different from 1edo because not even octaves exist; it could be described as 0edo. The mapping for this is the 0-val, <0 0 ... 0|.
'''OM''' temperament is the rank-0 temperament, in which every interval is a comma. Thus all notes are represented by the same note. This is different from 1edo because not even octaves exist; it could be described as [[0edo]]. The mapping for this is the 0-val, <0 0 ... 0|.
[[Category:todo:link]]
 
[[Category:Temperament]]
[[Category:Theory]]

Revision as of 20:22, 9 October 2018

A trivial temperament is something that fits the mathematical definition of "regular temperament", but is a unique, extreme case that people might be uncomfortable calling a "temperament". There are two kinds of trivial temperaments - JI, in which nothing is tempered, and OM temperament, in which everything is tempered.

Just intonation is a codimension-0 "temperament", which means nothing is tempered. The set of commas that are tempered out is the set {1/1}, but that's still a set, so JI is still a regular temperament. There is an infinite family of these "temperaments", one for each subgroup of JI. The 2-limit version is the equal temperament 1edo. The 3-limit version is the rank-2 temperament pythagorean, which has all the properties of any other rank-2 temperament except that it tempers no commas. The 5-limit version is rank-3, and so on. The mapping for this temperament is an nxn identity matrix, with wedgies of <1|, <<1||, <<<1|||... .

OM temperament is the rank-0 temperament, in which every interval is a comma. Thus all notes are represented by the same note. This is different from 1edo because not even octaves exist; it could be described as 0edo. The mapping for this is the 0-val, <0 0 ... 0|.