User:BudjarnLambeth/Sandbox2: Difference between revisions
Line 12: | Line 12: | ||
; 72edo | ; 72edo | ||
* Step size: | * Step size: 16.667{{c}}, octave size: 1200.00{{c}} | ||
Pure-octaves 72edo approximates all harmonics up to 16 within NNN{{c}}. | Pure-octaves 72edo approximates all harmonics up to 16 within NNN{{c}}. | ||
{{Harmonics in equal|72|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|72|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 72edo}} | ||
{{Harmonics in equal|72|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|72|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 72edo (continued)}} | ||
; [[249ed11]] | |||
* Step size: NNN{{c}}, octave size: 1200.38{{c}} | |||
Stretching the octave of 72edo by around 0.4{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 249ed11 does this. | |||
{{Harmonics in equal|249|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 249ed11}} | |||
{{Harmonics in equal|249|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 249ed11 (continued)}} | |||
; [[258ed12]] | ; [[258ed12]] | ||
* Step size: NNN{{c}}, octave size: 1200.55{{c}} | * Step size: NNN{{c}}, octave size: 1200.55{{c}} | ||
Stretching the octave of 72edo by around | Stretching the octave of 72edo by around 0.5{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 258ed12 does this. | ||
{{Harmonics in equal|258|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|258|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 258ed12}} | ||
{{Harmonics in equal|258|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|258|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 258ed12 (continued)}} | ||
; [[186ed6]] / [[WE|72et, 11-limit WE tuning]] / [[202ed7]] | ; [[186ed6]] / [[WE|72et, 11-limit WE tuning]] / [[ed7|202ed7]] | ||
* Step size: NNN{{c}}, octave size: 1200.76{{c}} | * Step size: NNN{{c}}, octave size: 1200.76{{c}} | ||
Stretching the octave of 72edo by around | Stretching the octave of 72edo by around 0.75{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 186ed6 does this. 72et's 11-limit WE tuning and 11-limit [[TE]] tuning both do this, their octave differing from 186ed6's by only 0.02{{c}}. The tuning 202ed7 does this also, it's octave differing from 186ed6 by less than a hundredth of a cent. | ||
{{Harmonics in equal|186|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|186|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 186ed6}} | ||
{{Harmonics in equal|186|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|186|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 186ed6 (continued)}} | ||
; [[zpi|380zpi]] | ; [[zpi|380zpi]] | ||
* Step size: 16.678{{c}}, octave size: 1200.82{{c}} | * Step size: 16.678{{c}}, octave size: 1200.82{{c}} | ||
Stretching the octave of 72edo by around | Stretching the octave of 72edo by around 0.8{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 380zpi does this. | ||
{{Harmonics in cet|16.678|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|16.678|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 380zpi}} | ||
{{Harmonics in cet|16.678|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|16.678|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 380zpi (continued)}} | ||
; [[WE|72et, 13-limit WE tuning]] | ; [[WE|72et, 13-limit WE tuning]] | ||
* Step size: 16.680{{c}}, octave size: 1200.96{{c}} | * Step size: 16.680{{c}}, octave size: 1200.96{{c}} | ||
Stretching the octave of 72edo by around NNN{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. Its | Stretching the octave of 72edo by around NNN{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. | ||
{{Harmonics in cet|16.680|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|16.680|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 72et, 13-limit WE tuning}} | ||
{{Harmonics in cet|16.680|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in cet|16.680|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 72et, 13-limit WE tuning (continued)}} | ||
; [[114edt]] | ; [[114edt]] / [[167ed5]] | ||
* Step size: NNN{{c}}, octave size: 1201.23{{c}} | * Step size: NNN{{c}}, octave size: 1201.23{{c}} | ||
Stretching the octave of 72edo by around NNN{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. The tuning | Stretching the octave of 72edo by around NNN{{c}} results in [[JND|unnoticeably]] better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 144edt does this. The tuning 167ed5 does this also, its octave differing from 114edt by only 0.05{{c}}. | ||
{{Harmonics in equal|114|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|114|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 114edt}} | ||
{{Harmonics in equal|114|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in | {{Harmonics in equal|114|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 114edt (continued)}} | ||
Revision as of 23:06, 26 August 2025
Title1
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.5 | -12.3 | -16.9 | +0.0 | +34.3 | -16.7 |
Relative (%) | -4.1 | -8.5 | -8.2 | +4.1 | -12.6 | +19.6 | -12.4 | -17.0 | +0.0 | +34.4 | -16.7 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (31) |
34 (34) |
36 (36) |
38 (38) |
40 (0) |
42 (2) |
43 (3) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.4 | +3.4 | +6.7 | +21.5 | +6.7 | +40.7 | +10.1 | +6.7 | +24.9 | -39.9 | +10.1 |
Relative (%) | +3.3 | +3.3 | +6.7 | +21.4 | +6.7 | +40.6 | +10.0 | +6.7 | +24.8 | -39.8 | +10.0 | |
Steps (reduced) |
12 (5) |
19 (5) |
24 (3) |
28 (0) |
31 (3) |
34 (6) |
36 (1) |
38 (3) |
40 (5) |
41 (6) |
43 (1) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.7 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 |
Relative (%) | +1.2 | +0.0 | +2.5 | +16.6 | +1.2 | +34.6 | +3.7 | +0.0 | +17.8 | -47.1 | +2.5 | |
Steps (reduced) |
12 (12) |
19 (0) |
24 (5) |
28 (9) |
31 (12) |
34 (15) |
36 (17) |
38 (0) |
40 (2) |
41 (3) |
43 (5) |
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.8 | -0.8 | +1.5 | +15.5 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 |
Relative (%) | +0.8 | -0.8 | +1.5 | +15.4 | +0.0 | +33.3 | +2.3 | -1.5 | +16.2 | -48.7 | +0.8 | |
Steps (reduced) |
12 (12) |
19 (19) |
24 (24) |
28 (28) |
31 (0) |
34 (3) |
36 (5) |
38 (7) |
40 (9) |
41 (10) |
43 (12) |
Title2
Octave stretch or compression
72edo's approximations of harmonics 3, 5, 7, 11, 13 and 17 can all be improved by slightly stretching the octave, using tunings such as 114edt or 186ed6. 114edt is quite hard and might be best for the 13- or 17-limit specifically. 186ed6 is milder and less disruptive, suitable for 11-limit and/or full 19-limit harmonies.
What follows is a comparison of stretched-octave 72edo tunings.
- 72edo
- Step size: 16.667 ¢, octave size: 1200.00 ¢
Pure-octaves 72edo approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -1.96 | +0.00 | -2.98 | -1.96 | -2.16 | +0.00 | -3.91 | -2.98 | -1.32 | -1.96 |
Relative (%) | +0.0 | -11.7 | +0.0 | -17.9 | -11.7 | -13.0 | +0.0 | -23.5 | -17.9 | -7.9 | -11.7 | |
Steps (reduced) |
72 (0) |
114 (42) |
144 (0) |
167 (23) |
186 (42) |
202 (58) |
216 (0) |
228 (12) |
239 (23) |
249 (33) |
258 (42) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.19 | -2.16 | -4.94 | +0.00 | -4.96 | -3.91 | +2.49 | -2.98 | -4.11 | -1.32 | +5.06 | -1.96 |
Relative (%) | -43.2 | -13.0 | -29.6 | +0.0 | -29.7 | -23.5 | +14.9 | -17.9 | -24.7 | -7.9 | +30.4 | -11.7 | |
Steps (reduced) |
266 (50) |
274 (58) |
281 (65) |
288 (0) |
294 (6) |
300 (12) |
306 (18) |
311 (23) |
316 (28) |
321 (33) |
326 (38) |
330 (42) |
- Step size: NNN ¢, octave size: 1200.38 ¢
Stretching the octave of 72edo by around 0.4 ¢ results in unnoticeably better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN ¢. The tuning 249ed11 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.38 | -1.35 | +0.76 | -2.10 | -0.97 | -1.09 | +1.14 | -2.70 | -1.72 | +0.00 | -0.59 |
Relative (%) | +2.3 | -8.1 | +4.6 | -12.6 | -5.8 | -6.5 | +6.9 | -16.2 | -10.3 | +0.0 | -3.5 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (167) |
186 (186) |
202 (202) |
216 (216) |
228 (228) |
239 (239) |
249 (0) |
258 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.79 | -0.71 | -3.45 | +1.52 | -3.40 | -2.32 | +4.11 | -1.33 | -2.44 | +0.38 | +6.78 | -0.21 |
Relative (%) | -34.7 | -4.3 | -20.7 | +9.1 | -20.4 | -13.9 | +24.6 | -8.0 | -14.6 | +2.3 | +40.7 | -1.2 | |
Steps (reduced) |
266 (17) |
274 (25) |
281 (32) |
288 (39) |
294 (45) |
300 (51) |
306 (57) |
311 (62) |
316 (67) |
321 (72) |
326 (77) |
330 (81) |
- Step size: NNN ¢, octave size: 1200.55 ¢
Stretching the octave of 72edo by around 0.5 ¢ results in unnoticeably better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN ¢. The tuning 258ed12 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.55 | -1.09 | +1.09 | -1.71 | -0.55 | -0.63 | +1.64 | -2.18 | -1.17 | +0.57 | +0.00 |
Relative (%) | +3.3 | -6.5 | +6.5 | -10.3 | -3.3 | -3.8 | +9.8 | -13.1 | -7.0 | +3.4 | +0.0 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (167) |
186 (186) |
202 (202) |
216 (216) |
228 (228) |
239 (239) |
249 (249) |
258 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.18 | -0.08 | -2.81 | +2.18 | -2.73 | -1.64 | +4.81 | -0.62 | -1.72 | +1.11 | +7.53 | +0.55 |
Relative (%) | -31.1 | -0.5 | -16.8 | +13.1 | -16.4 | -9.8 | +28.8 | -3.7 | -10.3 | +6.7 | +45.2 | +3.3 | |
Steps (reduced) |
266 (8) |
274 (16) |
281 (23) |
288 (30) |
294 (36) |
300 (42) |
306 (48) |
311 (53) |
316 (58) |
321 (63) |
326 (68) |
330 (72) |
- Step size: NNN ¢, octave size: 1200.76 ¢
Stretching the octave of 72edo by around 0.75 ¢ results in unnoticeably better primes 3, 5, 7, 11 and 13, but an unnoticeably worse prime 2. This approximates all harmonics up to 16 within NNN ¢. The tuning 186ed6 does this. 72et's 11-limit WE tuning and 11-limit TE tuning both do this, their octave differing from 186ed6's by only 0.02 ¢. The tuning 202ed7 does this also, it's octave differing from 186ed6 by less than a hundredth of a cent.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.76 | -0.76 | +1.51 | -1.23 | +0.00 | -0.04 | +2.27 | -1.51 | -0.47 | +1.30 | +0.76 |
Relative (%) | +4.5 | -4.5 | +9.1 | -7.3 | +0.0 | -0.2 | +13.6 | -9.1 | -2.8 | +7.8 | +4.5 | |
Steps (reduced) |
72 (72) |
114 (114) |
144 (144) |
167 (167) |
186 (0) |
202 (16) |
216 (30) |
228 (42) |
239 (53) |
249 (63) |
258 (72) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.40 | +0.72 | -1.98 | +3.03 | -1.87 | -0.76 | +5.70 | +0.29 | -0.79 | +2.06 | -8.19 | +1.51 |
Relative (%) | -26.4 | +4.3 | -11.9 | +18.2 | -11.2 | -4.5 | +34.2 | +1.7 | -4.8 | +12.3 | -49.1 | +9.1 | |
Steps (reduced) |
266 (80) |
274 (88) |
281 (95) |
288 (102) |
294 (108) |
300 (114) |
306 (120) |
311 (125) |
316 (130) |
321 (135) |
325 (139) |
330 (144) |
- Step size: 16.678 ¢, octave size: 1200.82 ¢
Stretching the octave of 72edo by around 0.8 ¢ results in unnoticeably better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN ¢. The tuning 380zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.82 | -0.66 | +1.63 | -1.09 | +0.15 | +0.13 | +2.45 | -1.33 | -0.27 | +1.50 | +0.97 |
Relative (%) | +4.9 | -4.0 | +9.8 | -6.5 | +0.9 | +0.8 | +14.7 | -8.0 | -1.6 | +9.0 | +5.8 | |
Step | 72 | 114 | 144 | 167 | 186 | 202 | 216 | 228 | 239 | 249 | 258 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.18 | +0.95 | -1.75 | +3.26 | -1.62 | -0.51 | +5.95 | +0.54 | -0.53 | +2.32 | -7.92 | +1.78 |
Relative (%) | -25.1 | +5.7 | -10.5 | +19.6 | -9.7 | -3.1 | +35.7 | +3.3 | -3.2 | +13.9 | -47.5 | +10.7 | |
Step | 266 | 274 | 281 | 288 | 294 | 300 | 306 | 311 | 316 | 321 | 325 | 330 |
- Step size: 16.680 ¢, octave size: 1200.96 ¢
Stretching the octave of 72edo by around NNN ¢ results in unnoticeably better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.96 | -0.44 | +1.92 | -0.75 | +0.52 | +0.53 | +2.88 | -0.87 | +0.21 | +2.00 | +1.48 |
Relative (%) | +5.8 | -2.6 | +11.5 | -4.5 | +3.1 | +3.2 | +17.3 | -5.2 | +1.2 | +12.0 | +8.9 | |
Step | 72 | 114 | 144 | 167 | 186 | 202 | 216 | 228 | 239 | 249 | 258 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.65 | +1.49 | -1.19 | +3.84 | -1.04 | +0.09 | +6.57 | +1.17 | +0.10 | +2.96 | -7.27 | +2.44 |
Relative (%) | -21.9 | +9.0 | -7.1 | +23.0 | -6.2 | +0.5 | +39.4 | +7.0 | +0.6 | +17.8 | -43.6 | +14.7 | |
Step | 266 | 274 | 281 | 288 | 294 | 300 | 306 | 311 | 316 | 321 | 325 | 330 |
- Step size: NNN ¢, octave size: 1201.23 ¢
Stretching the octave of 72edo by around NNN ¢ results in unnoticeably better primes 3, 5, 7 and 13, but unnoticeably worse primes 2 and 11. This approximates all harmonics up to 16 within NNN ¢. The tuning 144edt does this. The tuning 167ed5 does this also, its octave differing from 114edt by only 0.05 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.23 | +0.00 | +2.47 | -0.12 | +1.23 | +1.30 | +3.70 | +0.00 | +1.12 | +2.95 | +2.47 |
Relative (%) | +7.4 | +0.0 | +14.8 | -0.7 | +7.4 | +7.8 | +22.2 | +0.0 | +6.7 | +17.7 | +14.8 | |
Steps (reduced) |
72 (72) |
114 (0) |
144 (30) |
167 (53) |
186 (72) |
202 (88) |
216 (102) |
228 (0) |
239 (11) |
249 (21) |
258 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +2.54 | -0.12 | +4.94 | +0.09 | +1.23 | +7.73 | +2.35 | +1.30 | +4.19 | -6.03 | +3.70 |
Relative (%) | -15.8 | +15.2 | -0.7 | +29.6 | +0.5 | +7.4 | +46.4 | +14.1 | +7.8 | +25.1 | -36.2 | +22.2 | |
Steps (reduced) |
266 (38) |
274 (46) |
281 (53) |
288 (60) |
294 (66) |
300 (72) |
306 (78) |
311 (83) |
316 (88) |
321 (93) |
325 (97) |
330 (102) |