Lumatone mapping for 18edo: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) mNo edit summary |
Add music. |
||
Line 2: | Line 2: | ||
== Wide fifth == | == Wide fifth == | ||
7\18 produces a [[5L 3s]]-based Jankó mapping. | 7\18 produces a [[5L 3s]]-based Jankó mapping. [[Bryan Deister]] uses this mapping in [https://www.youtube.com/shorts/-oi5eJA65Zc Waltz in 18edo]. | ||
{{Lumatone EDO mapping|n=18|start=0|xstep=3|ystep=-2}} | {{Lumatone EDO mapping|n=18|start=0|xstep=3|ystep=-2}} | ||
Revision as of 22:33, 17 August 2025
There are many conceivable ways to map 18edo onto the onto the Lumatone keyboard. However, as both of its fifths are about as far away from just as possible, neither the sharp or the flat versions of the Standard Lumatone mapping for Pythagorean work particularly well. Only two generators work at all to produce single-period mos scales.
Wide fifth
7\18 produces a 5L 3s-based Jankó mapping. Bryan Deister uses this mapping in Waltz in 18edo.

0
3
1
4
7
10
13
17
2
5
8
11
14
17
2
0
3
6
9
12
15
0
3
6
9
12
16
1
4
7
10
13
16
1
4
7
10
13
16
1
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
5
8
11
14
17
2
5
8
11
14
17
2
5
8
15
0
3
6
9
12
15
0
3
6
9
4
7
10
13
16
1
4
7
14
17
2
5
8
3
6
This can be compressed down to a 2L 1s mapping that is useful for maximising range.

16
5
2
9
16
5
12
17
6
13
2
9
16
5
12
3
10
17
6
13
2
9
16
5
12
1
0
7
14
3
10
17
6
13
2
9
16
5
12
1
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
13
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
15
4
13
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
1
8
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
16
5
12
2
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
2
9
9
16
5
12
1
8
15
4
11
0
7
14
3
10
17
6
13
9
16
5
12
1
8
15
4
11
0
7
14
3
10
16
5
12
1
8
15
4
11
0
7
14
16
5
12
1
8
15
4
11
5
12
1
8
15
5
12
Flat neutral thirds
5\18 produces a 4L 3s-based Jankó mapping.

0
3
2
5
8
11
14
1
4
7
10
13
16
1
4
3
6
9
12
15
0
3
6
9
12
15
2
5
8
11
14
17
2
5
8
11
14
17
2
5
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
7
10
13
16
1
4
0
3
6
9
12
15
0
3
6
9
12
15
0
3
6
9
12
15
0
3
11
14
17
2
5
8
11
14
17
2
5
8
11
14
17
2
5
1
4
7
10
13
16
1
4
7
10
13
16
1
4
12
15
0
3
6
9
12
15
0
3
6
2
5
8
11
14
17
2
5
13
16
1
4
7
3
6
This can also be compressed down to a 3L 1s mapping that is useful if you want to keep octaves as close to horizontal as possible.

16
3
1
6
11
16
3
17
4
9
14
1
6
11
16
2
7
12
17
4
9
14
1
6
11
16
0
5
10
15
2
7
12
17
4
9
14
1
6
11
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
11
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
0
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
0
5
10
15
2
7
12
17
4
9
14
1
6
11
16
3
8
13
0
5
10
15
2
7
12
17
4
9
14
1
6
13
0
5
10
15
2
7
12
17
4
9
8
13
0
5
10
15
2
7
8
13
0
5
10
3
8