|
|
Line 3: |
Line 3: |
| == Diatonic == | | == Diatonic == |
| {{Lumatone EDO mapping|n=88|start=80|xstep=14|ystep=-5}} | | {{Lumatone EDO mapping|n=88|start=80|xstep=14|ystep=-5}} |
| However, due to the size of the edo, this does not cover the whole gamut. You can expand it to the [[7L 5s]] mapping, but this gives octaves a moderate downward slant. Brian Deister uses this mapping in [https://www.youtube.com/watch?v=JQly-kX6kcM ''microtonal improvisation in 88edo'']. | | However, due to the size of the edo, this does not cover the whole gamut. You can expand it to the [[7L 5s]] mapping, but this gives octaves a moderate downward slant. Brian Deister uses this mapping in [https://www.youtube.com/watch?v=JQly-kX6kcM ''microtonal improvisation in 88edo'']. |
| {{Lumatone EDO mapping|n=88|start=0|xstep=9|ystep=-4}} | | {{Lumatone EDO mapping|n=88|start=0|xstep=9|ystep=-4}} |
| Keeping the same generator but setting the period to the quarter octave gives you a near equal [[4L 8s]] scale that keeps octaves closer to horizontal and makes chords easy to play | | Keeping the same generator but setting the period to the quarter octave gives you a near equal [[4L 8s]] scale that keeps octaves closer to horizontal and makes chords easy to play |
| {{Lumatone EDO mapping|n=88|start=79|xstep=7|ystep=1}} | | {{Lumatone EDO mapping|n=88|start=79|xstep=7|ystep=1}} |
|
| |
|
Latest revision as of 19:41, 12 August 2025
There are many conceivable ways to map 88edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean. The b val is only slightly worse tuned, but produces 4 unconnected rings of 22edo notes.
Diatonic
80
6
1
15
29
43
57
84
10
24
38
52
66
80
6
5
19
33
47
61
75
1
15
29
43
57
0
14
28
42
56
70
84
10
24
38
52
66
80
6
9
23
37
51
65
79
5
19
33
47
61
75
1
15
29
43
57
4
18
32
46
60
74
0
14
28
42
56
70
84
10
24
38
52
66
80
6
13
27
41
55
69
83
9
23
37
51
65
79
5
19
33
47
61
75
1
15
29
43
57
8
22
36
50
64
78
4
18
32
46
60
74
0
14
28
42
56
70
84
10
24
38
52
66
80
6
31
45
59
73
87
13
27
41
55
69
83
9
23
37
51
65
79
5
19
33
47
61
75
1
15
29
43
57
68
82
8
22
36
50
64
78
4
18
32
46
60
74
0
14
28
42
56
70
84
10
24
38
52
66
31
45
59
73
87
13
27
41
55
69
83
9
23
37
51
65
79
5
19
33
47
61
75
68
82
8
22
36
50
64
78
4
18
32
46
60
74
0
14
28
42
56
70
31
45
59
73
87
13
27
41
55
69
83
9
23
37
51
65
79
68
82
8
22
36
50
64
78
4
18
32
46
60
74
31
45
59
73
87
13
27
41
55
69
83
68
82
8
22
36
50
64
78
31
45
59
73
87
68
82
However, due to the size of the edo, this does not cover the whole gamut. You can expand it to the 7L 5s mapping, but this gives octaves a moderate downward slant. Brian Deister uses this mapping in microtonal improvisation in 88edo.
0
9
5
14
23
32
41
1
10
19
28
37
46
55
64
6
15
24
33
42
51
60
69
78
87
8
2
11
20
29
38
47
56
65
74
83
4
13
22
31
7
16
25
34
43
52
61
70
79
0
9
18
27
36
45
54
63
3
12
21
30
39
48
57
66
75
84
5
14
23
32
41
50
59
68
77
86
8
17
26
35
44
53
62
71
80
1
10
19
28
37
46
55
64
73
82
3
12
21
30
4
13
22
31
40
49
58
67
76
85
6
15
24
33
42
51
60
69
78
87
8
17
26
35
44
53
18
27
36
45
54
63
72
81
2
11
20
29
38
47
56
65
74
83
4
13
22
31
40
49
58
67
76
85
41
50
59
68
77
86
7
16
25
34
43
52
61
70
79
0
9
18
27
36
45
54
63
72
81
2
73
82
3
12
21
30
39
48
57
66
75
84
5
14
23
32
41
50
59
68
77
86
7
8
17
26
35
44
53
62
71
80
1
10
19
28
37
46
55
64
73
82
3
40
49
58
67
76
85
6
15
24
33
42
51
60
69
78
87
8
63
72
81
2
11
20
29
38
47
56
65
74
83
4
7
16
25
34
43
52
61
70
79
0
9
30
39
48
57
66
75
84
5
62
71
80
1
10
85
6
Keeping the same generator but setting the period to the quarter octave gives you a near equal 4L 8s scale that keeps octaves closer to horizontal and makes chords easy to play
79
86
87
6
13
20
27
0
7
14
21
28
35
42
49
8
15
22
29
36
43
50
57
64
71
78
9
16
23
30
37
44
51
58
65
72
79
86
5
12
17
24
31
38
45
52
59
66
73
80
87
6
13
20
27
34
41
18
25
32
39
46
53
60
67
74
81
0
7
14
21
28
35
42
49
56
63
26
33
40
47
54
61
68
75
82
1
8
15
22
29
36
43
50
57
64
71
78
85
4
27
34
41
48
55
62
69
76
83
2
9
16
23
30
37
44
51
58
65
72
79
86
5
12
19
26
42
49
56
63
70
77
84
3
10
17
24
31
38
45
52
59
66
73
80
87
6
13
20
27
34
41
48
55
64
71
78
85
4
11
18
25
32
39
46
53
60
67
74
81
0
7
14
21
28
35
42
49
56
63
5
12
19
26
33
40
47
54
61
68
75
82
1
8
15
22
29
36
43
50
57
64
71
27
34
41
48
55
62
69
76
83
2
9
16
23
30
37
44
51
58
65
72
56
63
70
77
84
3
10
17
24
31
38
45
52
59
66
73
80
78
85
4
11
18
25
32
39
46
53
60
67
74
81
19
26
33
40
47
54
61
68
75
82
1
41
48
55
62
69
76
83
2
70
77
84
3
10
4
11
Mothra
The Mothra mapping is also a good option, as 88edo is its higher limit optimal patent val. However, it has similar problems to the meantone mapping in that you have to choose between not having access to all the notes or heavily slanted octaves.
1L 4s
19
36
39
56
73
2
19
42
59
76
5
22
39
56
73
62
79
8
25
42
59
76
5
22
39
56
65
82
11
28
45
62
79
8
25
42
59
76
5
22
85
14
31
48
65
82
11
28
45
62
79
8
25
42
59
76
5
0
17
34
51
68
85
14
31
48
65
82
11
28
45
62
79
8
25
42
59
20
37
54
71
0
17
34
51
68
85
14
31
48
65
82
11
28
45
62
79
8
25
42
23
40
57
74
3
20
37
54
71
0
17
34
51
68
85
14
31
48
65
82
11
28
45
62
79
8
60
77
6
23
40
57
74
3
20
37
54
71
0
17
34
51
68
85
14
31
48
65
82
11
28
45
62
79
26
43
60
77
6
23
40
57
74
3
20
37
54
71
0
17
34
51
68
85
14
31
48
65
82
11
9
26
43
60
77
6
23
40
57
74
3
20
37
54
71
0
17
34
51
68
85
14
31
63
80
9
26
43
60
77
6
23
40
57
74
3
20
37
54
71
0
17
34
46
63
80
9
26
43
60
77
6
23
40
57
74
3
20
37
54
12
29
46
63
80
9
26
43
60
77
6
23
40
57
83
12
29
46
63
80
9
26
43
60
77
49
66
83
12
29
46
63
80
32
49
66
83
12
86
15
5L 1s
33
50
36
53
70
87
16
22
39
56
73
2
19
36
53
25
42
59
76
5
22
39
56
73
2
19
11
28
45
62
79
8
25
42
59
76
5
22
39
56
14
31
48
65
82
11
28
45
62
79
8
25
42
59
76
5
22
0
17
34
51
68
85
14
31
48
65
82
11
28
45
62
79
8
25
42
59
3
20
37
54
71
0
17
34
51
68
85
14
31
48
65
82
11
28
45
62
79
8
25
77
6
23
40
57
74
3
20
37
54
71
0
17
34
51
68
85
14
31
48
65
82
11
28
45
62
9
26
43
60
77
6
23
40
57
74
3
20
37
54
71
0
17
34
51
68
85
14
31
48
65
82
11
28
46
63
80
9
26
43
60
77
6
23
40
57
74
3
20
37
54
71
0
17
34
51
68
85
14
31
12
29
46
63
80
9
26
43
60
77
6
23
40
57
74
3
20
37
54
71
0
17
34
49
66
83
12
29
46
63
80
9
26
43
60
77
6
23
40
57
74
3
20
15
32
49
66
83
12
29
46
63
80
9
26
43
60
77
6
23
52
69
86
15
32
49
66
83
12
29
46
63
80
9
18
35
52
69
86
15
32
49
66
83
12
55
72
1
18
35
52
69
86
21
38
55
72
1
58
75
5L 6s
0
3
14
17
20
23
26
25
28
31
34
37
40
43
46
39
42
45
48
51
54
57
60
63
66
69
50
53
56
59
62
65
68
71
74
77
80
83
86
1
64
67
70
73
76
79
82
85
0
3
6
9
12
15
18
21
24
75
78
81
84
87
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
67
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
29
32
35
38
41
44
47
50
53
56
59
62
65
68
71
74
77
80
83
86
1
4
7
10
13
16
19
22
49
52
55
58
61
64
67
70
73
76
79
82
85
0
3
6
9
12
15
18
21
24
27
30
33
36
72
75
78
81
84
87
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
47
50
53
56
59
62
65
68
71
74
77
80
83
86
70
73
76
79
82
85
0
3
6
9
12
2
5
8
11
14
17
20
23
25
28
31
34
37
45
48
Other Mappings
To maximise your range without skipping notes and keep octaves close to horizontal involves an inverted 9L 2s (step ratio 10:-1) scale which is not particularly intuitive to play.
5
15
4
14
24
34
44
81
3
13
23
33
43
53
63
80
2
12
22
32
42
52
62
72
82
4
69
79
1
11
21
31
41
51
61
71
81
3
13
23
68
78
0
10
20
30
40
50
60
70
80
2
12
22
32
42
52
57
67
77
87
9
19
29
39
49
59
69
79
1
11
21
31
41
51
61
71
56
66
76
86
8
18
28
38
48
58
68
78
0
10
20
30
40
50
60
70
80
2
12
45
55
65
75
85
7
17
27
37
47
57
67
77
87
9
19
29
39
49
59
69
79
1
11
21
31
54
64
74
84
6
16
26
36
46
56
66
76
86
8
18
28
38
48
58
68
78
0
10
20
30
40
50
60
73
83
5
15
25
35
45
55
65
75
85
7
17
27
37
47
57
67
77
87
9
19
29
39
49
59
14
24
34
44
54
64
74
84
6
16
26
36
46
56
66
76
86
8
18
28
38
48
58
33
43
53
63
73
83
5
15
25
35
45
55
65
75
85
7
17
27
37
47
62
72
82
4
14
24
34
44
54
64
74
84
6
16
26
36
46
81
3
13
23
33
43
53
63
73
83
5
15
25
35
22
32
42
52
62
72
82
4
14
24
34
41
51
61
71
81
3
13
23
70
80
2
12
22
1
11