Lumatone mapping for 67edo: Difference between revisions
Jump to navigation
Jump to search
Create Page. |
→Antidiatonic: --> Balzano (antidiatonic would be 2L 5s) |
||
Line 4: | Line 4: | ||
{{Lumatone EDO mapping|n=67|start=65|xstep=11|ystep=-5}} | {{Lumatone EDO mapping|n=67|start=65|xstep=11|ystep=-5}} | ||
== | == Balzano == | ||
The smallest mapping that does cover all the notes in a clear fashion with octaves kept near horizontal and a minimum of repetition is the [[2L 7s]] one generated by 30/67. | The smallest mapping that does cover all the notes in a clear fashion with octaves kept near horizontal and a minimum of repetition is the [[2L 7s]] one generated by 30/67. | ||
{{Lumatone EDO mapping|n=67|start=34|xstep=7|ystep=2}} | {{Lumatone EDO mapping|n=67|start=34|xstep=7|ystep=2}} | ||
{{Navbox Lumatone}} | {{Navbox Lumatone}} |
Revision as of 09:48, 21 July 2025
There are many conceivable ways to map 67edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean. However, due to the size of the edo, this mapping does not quite cover all the notes.
Diatonic

65
9
4
15
26
37
48
66
10
21
32
43
54
65
9
5
16
27
38
49
60
4
15
26
37
48
0
11
22
33
44
55
66
10
21
32
43
54
65
9
6
17
28
39
50
61
5
16
27
38
49
60
4
15
26
37
48
1
12
23
34
45
56
0
11
22
33
44
55
66
10
21
32
43
54
65
9
7
18
29
40
51
62
6
17
28
39
50
61
5
16
27
38
49
60
4
15
26
37
48
2
13
24
35
46
57
1
12
23
34
45
56
0
11
22
33
44
55
66
10
21
32
43
54
65
9
19
30
41
52
63
7
18
29
40
51
62
6
17
28
39
50
61
5
16
27
38
49
60
4
15
26
37
48
47
58
2
13
24
35
46
57
1
12
23
34
45
56
0
11
22
33
44
55
66
10
21
32
43
54
19
30
41
52
63
7
18
29
40
51
62
6
17
28
39
50
61
5
16
27
38
49
60
47
58
2
13
24
35
46
57
1
12
23
34
45
56
0
11
22
33
44
55
19
30
41
52
63
7
18
29
40
51
62
6
17
28
39
50
61
47
58
2
13
24
35
46
57
1
12
23
34
45
56
19
30
41
52
63
7
18
29
40
51
62
47
58
2
13
24
35
46
57
19
30
41
52
63
47
58
Balzano
The smallest mapping that does cover all the notes in a clear fashion with octaves kept near horizontal and a minimum of repetition is the 2L 7s one generated by 30/67.

34
41
43
50
57
64
4
45
52
59
66
6
13
20
27
54
61
1
8
15
22
29
36
43
50
57
56
63
3
10
17
24
31
38
45
52
59
66
6
13
65
5
12
19
26
33
40
47
54
61
1
8
15
22
29
36
43
0
7
14
21
28
35
42
49
56
63
3
10
17
24
31
38
45
52
59
66
9
16
23
30
37
44
51
58
65
5
12
19
26
33
40
47
54
61
1
8
15
22
29
11
18
25
32
39
46
53
60
0
7
14
21
28
35
42
49
56
63
3
10
17
24
31
38
45
52
27
34
41
48
55
62
2
9
16
23
30
37
44
51
58
65
5
12
19
26
33
40
47
54
61
1
8
15
50
57
64
4
11
18
25
32
39
46
53
60
0
7
14
21
28
35
42
49
56
63
3
10
17
24
13
20
27
34
41
48
55
62
2
9
16
23
30
37
44
51
58
65
5
12
19
26
33
36
43
50
57
64
4
11
18
25
32
39
46
53
60
0
7
14
21
28
35
66
6
13
20
27
34
41
48
55
62
2
9
16
23
30
37
44
22
29
36
43
50
57
64
4
11
18
25
32
39
46
52
59
66
6
13
20
27
34
41
48
55
8
15
22
29
36
43
50
57
38
45
52
59
66
61
1