Lumatone mapping for 66edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 66edo onto the onto the Lumatone keyboard. However, since it has three mutually-exclusive rings of 22edo fifths, the Standard Lumatone mapping for Pythagorean is not one of them. The second best 5th produces two mutually-exclusive rings of 33edo 5ths, so that doesn't work either, the third best is outside the diatonic tuning range and also contorted, which means the antidiatonic scale generated by 29/66 is the closest thing to a diatonic scale that can reach all the notes. Due to the size of the edo, this needs to be expanded to 7L 2s to give access to the full gamut.

Antidiatonic

2L 5s

30
38
43
51
59
1
9
48
56
64
6
14
22
30
38
61
3
11
19
27
35
43
51
59
1
9
0
8
16
24
32
40
48
56
64
6
14
22
30
38
13
21
29
37
45
53
61
3
11
19
27
35
43
51
59
1
9
18
26
34
42
50
58
0
8
16
24
32
40
48
56
64
6
14
22
30
38
31
39
47
55
63
5
13
21
29
37
45
53
61
3
11
19
27
35
43
51
59
1
9
36
44
52
60
2
10
18
26
34
42
50
58
0
8
16
24
32
40
48
56
64
6
14
22
30
38
57
65
7
15
23
31
39
47
55
63
5
13
21
29
37
45
53
61
3
11
19
27
35
43
51
59
1
9
20
28
36
44
52
60
2
10
18
26
34
42
50
58
0
8
16
24
32
40
48
56
64
6
14
22
57
65
7
15
23
31
39
47
55
63
5
13
21
29
37
45
53
61
3
11
19
27
35
20
28
36
44
52
60
2
10
18
26
34
42
50
58
0
8
16
24
32
40
57
65
7
15
23
31
39
47
55
63
5
13
21
29
37
45
53
20
28
36
44
52
60
2
10
18
26
34
42
50
58
57
65
7
15
23
31
39
47
55
63
5
20
28
36
44
52
60
2
10
57
65
7
15
23
20
28

7L 2s

60
2
65
7
15
23
31
62
4
12
20
28
36
44
52
1
9
17
25
33
41
49
57
65
7
15
64
6
14
22
30
38
46
54
62
4
12
20
28
36
3
11
19
27
35
43
51
59
1
9
17
25
33
41
49
57
65
0
8
16
24
32
40
48
56
64
6
14
22
30
38
46
54
62
4
12
20
5
13
21
29
37
45
53
61
3
11
19
27
35
43
51
59
1
9
17
25
33
41
49
2
10
18
26
34
42
50
58
0
8
16
24
32
40
48
56
64
6
14
22
30
38
46
54
62
4
15
23
31
39
47
55
63
5
13
21
29
37
45
53
61
3
11
19
27
35
43
51
59
1
9
17
25
33
36
44
52
60
2
10
18
26
34
42
50
58
0
8
16
24
32
40
48
56
64
6
14
22
30
38
65
7
15
23
31
39
47
55
63
5
13
21
29
37
45
53
61
3
11
19
27
35
43
20
28
36
44
52
60
2
10
18
26
34
42
50
58
0
8
16
24
32
40
49
57
65
7
15
23
31
39
47
55
63
5
13
21
29
37
45
4
12
20
28
36
44
52
60
2
10
18
26
34
42
33
41
49
57
65
7
15
23
31
39
47
54
62
4
12
20
28
36
44
17
25
33
41
49
38
46

Other Mappings

Due to the composite nature of the edo, less than a third of the generators cover all the notes and most of those do not have named temperaments. Those that do exist are mostly derived by dividing the period and/or generator from a 22edo temperament by 3. The ammonite mapping does this for porcupine and is probably the best temperament supported by the edo, although the 5L 3s mapping skips an occasional step and the 8L 5s one is quite inefficient on the lumatone.

5L 3s

61
4
2
11
20
29
38
0
9
18
27
36
45
54
63
7
16
25
34
43
52
61
4
13
22
31
5
14
23
32
41
50
59
2
11
20
29
38
47
56
12
21
30
39
48
57
0
9
18
27
36
45
54
63
6
15
24
10
19
28
37
46
55
64
7
16
25
34
43
52
61
4
13
22
31
40
49
17
26
35
44
53
62
5
14
23
32
41
50
59
2
11
20
29
38
47
56
65
8
17
15
24
33
42
51
60
3
12
21
30
39
48
57
0
9
18
27
36
45
54
63
6
15
24
33
42
31
40
49
58
1
10
19
28
37
46
55
64
7
16
25
34
43
52
61
4
13
22
31
40
49
58
1
10
56
65
8
17
26
35
44
53
62
5
14
23
32
41
50
59
2
11
20
29
38
47
56
65
8
17
24
33
42
51
60
3
12
21
30
39
48
57
0
9
18
27
36
45
54
63
6
15
24
49
58
1
10
19
28
37
46
55
64
7
16
25
34
43
52
61
4
13
22
17
26
35
44
53
62
5
14
23
32
41
50
59
2
11
20
29
42
51
60
3
12
21
30
39
48
57
0
9
18
27
10
19
28
37
46
55
64
7
16
25
34
35
44
53
62
5
14
23
32
3
12
21
30
39
28
37

8L 5s

0
7
2
9
16
23
30
63
4
11
18
25
32
39
46
65
6
13
20
27
34
41
48
55
62
3
60
1
8
15
22
29
36
43
50
57
64
5
12
19
62
3
10
17
24
31
38
45
52
59
0
7
14
21
28
35
42
57
64
5
12
19
26
33
40
47
54
61
2
9
16
23
30
37
44
51
58
59
0
7
14
21
28
35
42
49
56
63
4
11
18
25
32
39
46
53
60
1
8
15
54
61
2
9
16
23
30
37
44
51
58
65
6
13
20
27
34
41
48
55
62
3
10
17
24
31
63
4
11
18
25
32
39
46
53
60
1
8
15
22
29
36
43
50
57
64
5
12
19
26
33
40
47
54
13
20
27
34
41
48
55
62
3
10
17
24
31
38
45
52
59
0
7
14
21
28
35
42
49
56
36
43
50
57
64
5
12
19
26
33
40
47
54
61
2
9
16
23
30
37
44
51
58
52
59
0
7
14
21
28
35
42
49
56
63
4
11
18
25
32
39
46
53
9
16
23
30
37
44
51
58
65
6
13
20
27
34
41
48
55
25
32
39
46
53
60
1
8
15
22
29
36
43
50
48
55
62
3
10
17
24
31
38
45
52
64
5
12
19
26
33
40
47
21
28
35
42
49
37
44

6L 3s

Using the porcupine generator with a third octave period is both quite harmonically efficient and maximises your range without any skipped notes. Bryan Deister has demonstrated this mapping in microtonal improvisation in 66edo (2025).

1
10
5
14
23
32
41
0
9
18
27
36
45
54
63
4
13
22
31
40
49
58
1
10
19
28
65
8
17
26
35
44
53
62
5
14
23
32
41
50
3
12
21
30
39
48
57
0
9
18
27
36
45
54
63
6
15
64
7
16
25
34
43
52
61
4
13
22
31
40
49
58
1
10
19
28
37
2
11
20
29
38
47
56
65
8
17
26
35
44
53
62
5
14
23
32
41
50
59
2
63
6
15
24
33
42
51
60
3
12
21
30
39
48
57
0
9
18
27
36
45
54
63
6
15
24
10
19
28
37
46
55
64
7
16
25
34
43
52
61
4
13
22
31
40
49
58
1
10
19
28
37
46
55
32
41
50
59
2
11
20
29
38
47
56
65
8
17
26
35
44
53
62
5
14
23
32
41
50
59
63
6
15
24
33
42
51
60
3
12
21
30
39
48
57
0
9
18
27
36
45
54
63
19
28
37
46
55
64
7
16
25
34
43
52
61
4
13
22
31
40
49
58
50
59
2
11
20
29
38
47
56
65
8
17
26
35
44
53
62
6
15
24
33
42
51
60
3
12
21
30
39
48
57
37
46
55
64
7
16
25
34
43
52
61
59
2
11
20
29
38
47
56
24
33
42
51
60
46
55


ViewTalkEditLumatone mappings 
63edo64edo65edoLumatone mapping for 66edo67edo68edo69edo