32edf: Difference between revisions
Jump to navigation
Jump to search
m Infobox ET added |
m Todo, harmonics, other tinkering |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
'''32EDF''' is the [[EDF|equal division of the just perfect fifth]] into 32 parts of 21.9361 [[cent|cents]] each, corresponding to 54.7044 [[edo]] (similar to every seventh step of [[383edo]]). It is related to the regular temperament which tempers out |127 -127 32> in the 5-limit, which is supported by 164, 383, 547, 711, 875, and 1258 EDOs. | '''32EDF''' is the [[EDF|equal division of the just perfect fifth]] into 32 parts of 21.9361 [[cent|cents]] each, corresponding to 54.7044 [[edo]] (similar to every seventh step of [[383edo]]). | ||
It is related to the [[regular temperament]] which [[tempers out]] |127 -127 32> in the [[5-limit]], which is supported by {{EDOs|164, 383, 547, 711, 875, and 1258}} EDOs. | |||
Lookalikes: [[55edo]], [[87edt]] | Lookalikes: [[55edo]], [[87edt]] | ||
==Harmonics== | |||
{{Harmonics in equal|32|3|2}} | |||
{{Harmonics in equal|32|3|2|start=12|collapsed=1}} | |||
==Intervals== | ==Intervals== | ||
{| class="wikitable" | {| class="wikitable mw-collapsible" | ||
|+ Intervals of 32edf | |||
|- | |- | ||
! | degree | ! | degree | ||
Line 337: | Line 344: | ||
|} | |} | ||
{{todo|expand}} | |||
[[Category:Edf]] | [[Category:Edf]] | ||
[[Category:Edonoi]] | [[Category:Edonoi]] |
Revision as of 07:52, 18 December 2024
← 31edf | 32edf | 33edf → |
32EDF is the equal division of the just perfect fifth into 32 parts of 21.9361 cents each, corresponding to 54.7044 edo (similar to every seventh step of 383edo).
It is related to the regular temperament which tempers out |127 -127 32> in the 5-limit, which is supported by 164, 383, 547, 711, 875, and 1258 EDOs.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.49 | +6.49 | -8.97 | -0.43 | -8.97 | +9.33 | -2.48 | -8.97 | +6.06 | -5.40 | -2.48 |
Relative (%) | +29.6 | +29.6 | -40.9 | -2.0 | -40.9 | +42.5 | -11.3 | -40.9 | +27.6 | -24.6 | -11.3 | |
Steps (reduced) |
55 (23) |
87 (23) |
109 (13) |
127 (31) |
141 (13) |
154 (26) |
164 (4) |
173 (13) |
182 (22) |
189 (29) |
196 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.44 | -6.12 | +6.06 | +4.00 | +8.73 | -2.48 | -8.34 | -9.40 | -6.12 | +1.09 | -10.06 |
Relative (%) | -43.0 | -27.9 | +27.6 | +18.3 | +39.8 | -11.3 | -38.0 | -42.8 | -27.9 | +5.0 | -45.9 | |
Steps (reduced) |
202 (10) |
208 (16) |
214 (22) |
219 (27) |
224 (0) |
228 (4) |
232 (8) |
236 (12) |
240 (16) |
244 (20) |
247 (23) |
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 21.9361 | 81/80 | |
2 | 43.8722 | 40/39 | |
3 | 65.8083 | 27/26, 28/27 | |
4 | 87.7444 | ||
5 | 109.6805 | 49/46, 16/15 | |
6 | 131.6166 | 41/38 | |
7 | 153.5527 | 59/54, 18/11 | |
8 | 175.4888 | ||
9 | 197.4248 | 65/58 | |
10 | 219.3609 | 42/37 | |
11 | 241.297 | (23/20) | |
12 | 263.2331 | 7/6 | |
13 | 285.1692 | ||
14 | 307.1053 | 117/98 | |
15 | 329.0414 | 52/43 | |
16 | 350.9775 | 60/49, 49/40 | |
17 | 372.9136 | 129/104 | |
18 | 394.8497 | 49/39 | |
19 | 416.7858 | 14/11 | |
20 | 438.7219 | 9/7 | |
21 | 460.6580 | (30/23) | |
22 | 482.5941 | 37/28 | |
23 | 504.5302 | 87/65 | pseudo-4/3 |
24 | 526.4663 | 61/45 | |
25 | 548.4023 | 81/59 | |
26 | 570.3384 | 57/41 | |
27 | 592.2745 | 69/49 | |
28 | 614.2106 | 10/7 | |
29 | 636.1467 | 13/9 | |
30 | 658.0828 | 117/80 | |
31 | 680.0189 | 40/27 | |
32 | 701.9550 | exact 3/2 | just perfect fifth |
33 | 723.8911 | 243/160 | |
34 | 745.8372 | 20/13 | |
35 | 766.7633 | 81/52, 14/9 | |
36 | 790.6994 | ||
37 | 811.6355 | 147/92, 8/5 | |
38 | 833.5716 | 123/76 | |
39 | 855.5077 | 59/36, 18/11 | |
40 | 877.4438 | ||
41 | 899.3798 | 195/116 | |
42 | 922.3159 | 63/37 | |
43 | 943.252 | 69/40 | |
44 | 965.1881 | 7/4 | |
45 | 987.1242 | ||
46 | 1009.0603 | 351/196 | |
47 | 1030.9964 | 78/43 | |
48 | 1052.9325 | 90/49, 147/80 | |
49 | 1076.8686 | 387/208 | |
50 | 1096.847 | 147/78 | |
51 | 1118.7408 | 21/11 | |
52 | 1140.6769 | 27/14 | |
53 | 1162.613 | 45/23 | |
54 | 1184.5451 | 111/56 | |
55 | 1206.4852 | 261/130 | pseudo-2/1 |
56 | 1228.4213 | 61/30 | |
57 | 1250.3575 | 243/118 | |
58 | 1272.2934 | 171/82 | |
59 | 1294.2395 | 207/98 | |
60 | 1316.1656 | 15/7 | |
61 | 1338.1017 | 13/6 | |
62 | 1360.0378 | 351/160 | |
63 | 1381.9739 | 20/9 | |
64 | 1403.91 | exact 9/4 |