395edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
m Partial undo
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{{comma basis begin}}
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 41: Line 50:
| 0.1792
| 0.1792
| 5.90
| 5.90
{{comma basis end}}
|}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{{rank-2 begin}}
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
|-
| 1
| 1
Line 51: Line 67:
| 4/3
| 4/3
| [[Pontiac]]
| [[Pontiac]]
{{rank-2 end}}
|}
{{orf}}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct

Revision as of 13:18, 16 November 2024

← 394edo 395edo 396edo →
Prime factorization 5 × 79
Step size 3.03797 ¢ 
Fifth 231\395 (701.772 ¢)
Semitones (A1:m2) 37:30 (112.4 ¢ : 91.14 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

395edo is consistent to the 9-odd-limit. The equal temperament tempers out 32805/32768 in the 5-limit; 4375/4374, 65625/65536, 14348907/14336000, and 40500000/40353607 in the 7-limit; supporting gold and pontiac.

Prime harmonics

Approximation of prime harmonics in 395edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.18 -0.49 +0.29 -1.44 +0.99 +1.37 +0.21 +0.59 +0.30 +0.28
Relative (%) +0.0 -6.0 -16.2 +9.5 -47.5 +32.6 +45.2 +6.9 +19.3 +9.8 +9.2
Steps
(reduced)
395
(0)
626
(231)
917
(127)
1109
(319)
1366
(181)
1462
(277)
1615
(35)
1678
(98)
1787
(207)
1919
(339)
1957
(377)

Subsets and supersets

Since 395 factors into 5 × 79, 395edo has 5edo and 79edo as its subset edos.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-626 395 [395 626]] 0.0577 0.0577 1.90
2.3.5 32805/32768, [-34 -43 44 [395 626 917]] 0.1089 0.0864 2.84
2.3.5.7 4375/4374, 32805/32768, 40500000/40353607 [395 626 917 1109]] 0.0560 0.1183 3.89
2.3.5.7.11 1375/1372, 4375/4374, 32805/32768, 35937/35840 [395 626 917 1109 1366]] 0.1283 0.1792 5.90

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 164\395 498.23 4/3 Pontiac

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct