509edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
m Partial undo
Line 14: Line 14:


== Regular temperament properties ==
== Regular temperament properties ==
{{comma basis begin}}
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 57: Line 66:
| 0.1318
| 0.1318
| 5.59
| 5.59
{{comma basis end}}
|}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{{rank-2 begin}}
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
|-
| 1
| 1
Line 85: Line 101:
| 243/200
| 243/200
| [[Amity]]
| [[Amity]]
{{rank-2 end}}
|}
{{orf}}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


== Music ==
== Music ==

Revision as of 12:55, 16 November 2024

← 508edo 509edo 510edo →
Prime factorization 509 (prime)
Step size 2.35756 ¢ 
Fifth 298\509 (702.554 ¢)
Semitones (A1:m2) 50:37 (117.9 ¢ : 87.23 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

509edo has a sharp tendency in lower harmonics. The 13-limit optimal tuning of this temperament is consistent to the 15-integer-limit, so one might want to keep the octave compression tight.

The equal temperament tempers out 1600000/1594323 (amity comma) in the 5-limit; 2401/2400 and 29360128/29296875 in the 7-limit; and 3025/3024, 5632/5625, 41503/41472, 42592/42525, 151263/151250, 172032/171875, 180224/180075, 322102/321489, 422576/421875, 456533/455625, and 1953125/1948617 in the 11-limit. It provides the optimal patent val for petrtri, the 2.11/5.13/5 subgroup temperament tempering out 2200/2197.

Odd harmonics

Approximation of odd harmonics in 509edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.60 +0.33 +0.13 -1.16 +0.35 +1.12 +0.93 +1.13 -0.46 +0.73 -1.16
Relative (%) +25.4 +13.9 +5.6 -49.2 +14.9 +47.6 +39.3 +48.1 -19.5 +31.0 -49.3
Steps
(reduced)
807
(298)
1182
(164)
1429
(411)
1613
(86)
1761
(234)
1884
(357)
1989
(462)
2081
(45)
2162
(126)
2236
(200)
2302
(266)

Subsets and supersets

509edo is the 97th prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [807 -509 [509 807]] −0.1890 0.1889 8.01
2.3.5 [9 -13 5, [93 -3 -38 [509 807 1182]] −0.1729 0.1559 6.61
2.3.5.7 2401/2400, 1600000/1594323, 29360128/29296875 [509 807 1182 1429]] −0.1415 0.1456 6.18
2.3.5.7.11 2401/2400, 3025/3024, 5632/5625, 1600000/1594323 [509 807 1182 1429 1761]] −0.1335 0.1312 5.57
2.3.5.7.11.13 2080/2079, 2200/2197, 2401/2400, 3025/3024, 5632/5625 [509 807 1182 1429 1761 1884]] −0.1618 0.1354 5.74
2.3.5.7.11.13.17 1225/1224, 2080/2079, 2200/2197, 2401/2400, 2431/2430, 4914/4913 [509 807 1182 1429 1761 1884 2081]] −0.1784 0.1318 5.59

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 18\509 42.44 40/39 Humorous
1 36\509 84.87 21/20 Amicable
1 115\509 271.12 1024/875 Quasiorwell
1 144\509 339.49 243/200 Amity

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium