337edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 43: Line 34:
| 0.2886
| 0.2886
| 8.10
| 8.10
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 72: Line 56:
| 14/11
| 14/11
| [[Sqrtphi]] (337, 11-limit)
| [[Sqrtphi]] (337, 11-limit)
|}
{{rank-2 end}}
{{orf}}
{{orf}}



Revision as of 01:48, 16 November 2024

← 336edo 337edo 338edo →
Prime factorization 337 (prime)
Step size 3.56083 ¢ 
Fifth 197\337 (701.484 ¢)
Semitones (A1:m2) 31:26 (110.4 ¢ : 92.58 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

337edo is consistent to the 9-odd-limit, but the error of harmonic 5 is quite large. If the harmonic is used at all, it tends very flat. The equal temperament tempers out 16875/16807, 420175/419904, and 5250987/5242880 in the 7-limit. It supports tokko and sqrtphi.

Odd harmonics

Approximation of odd harmonics in 337edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.47 -1.74 -0.28 -0.94 +0.61 -0.17 +1.35 -1.69 +1.60 -0.75 -1.57
Relative (%) -13.2 -49.0 -7.9 -26.5 +17.2 -4.8 +37.8 -47.5 +44.8 -21.1 -44.0
Steps
(reduced)
534
(197)
782
(108)
946
(272)
1068
(57)
1166
(155)
1247
(236)
1317
(306)
1377
(29)
1432
(84)
1480
(132)
1524
(176)

Subsets and supersets

337edo is the 68th prime edo.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-534 337 | [337 534]] | 0.1487 | 0.1487 | 4.18 |- | 2.3.5 | 15625/15552, [-88 57 -1 | [337 534 782]] | 0.3495 | 0.3089 | 8.67 |- | 2.3.5.7 | 15625/15552, 16875/16807, 7381125/7340032 | [337 534 782 946]] | 0.2870 | 0.2886 | 8.10 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 67\337 | 238.58 | 147/128 | Tokko |- | 1 | 89\337 | 316.91 | 6/5 | Hanson |- | 1 | 117\337 | 416.62 | 14/11 | Sqrtphi (337, 11-limit) Template:Rank-2 end Template:Orf

Music

Francium