3079edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|3079}} == Theory == 3079et is consistent to the 9-odd-limit. The equal temperament tempers out 43046721/43025920, 1220703125/1219784832..."
 
Francium (talk | contribs)
+regular temperament properties
Line 10: Line 10:
=== Subsets and supersets ===
=== Subsets and supersets ===
3079edo is the 440th [[prime EDO]].
3079edo is the 440th [[prime EDO]].
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
|-
![[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
|-
|2.3
|{{monzo|-4880 3079}}
|{{mapping|3079 4880}}
| 0.0122
| 0.0122
| 3.13
|-
|2.3.5
|{{monzo|-69 45 -1}}, {{monzo|-50 -71 70}}
|{{mapping|3079 4880 7149}}
| 0.0203
| 0.0151
| 3.87
|-
|2.3.5.7
|43046721/43025920, 1220703125/1219784832, {{monzo|51 -13 -1 -10}}
|{{mapping|3079 4880 7149 8644}}
| 0.0099
| 0.0223
| 5.72
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|1
|1278\3079
|498.084
|4/3
|[[Counterschismic]]
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct

Revision as of 12:20, 14 May 2024

← 3078edo 3079edo 3080edo →
Prime factorization 3079 (prime)
Step size 0.389737 ¢ 
Fifth 1801\3079 (701.916 ¢)
Semitones (A1:m2) 291:232 (113.4 ¢ : 90.42 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

3079et is consistent to the 9-odd-limit. The equal temperament tempers out 43046721/43025920, 1220703125/1219784832 and [51 -13 -1 -10 in the 7-limit. It supports acrosextilififths.

Prime harmonics

Approximation of prime harmonics in 3079edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.039 -0.084 +0.060 +0.160 +0.135 -0.116 -0.144 -0.018 +0.108 +0.012
Relative (%) +0.0 -10.0 -21.7 +15.4 +41.0 +34.6 -29.8 -36.9 -4.7 +27.7 +3.0
Steps
(reduced)
3079
(0)
4880
(1801)
7149
(991)
8644
(2486)
10652
(1415)
11394
(2157)
12585
(269)
13079
(763)
13928
(1612)
14958
(2642)
15254
(2938)

Subsets and supersets

3079edo is the 440th prime EDO.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-4880 3079 [3079 4880]] 0.0122 0.0122 3.13
2.3.5 [-69 45 -1, [-50 -71 70 [3079 4880 7149]] 0.0203 0.0151 3.87
2.3.5.7 43046721/43025920, 1220703125/1219784832, [51 -13 -1 -10 [3079 4880 7149 8644]] 0.0099 0.0223 5.72

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 1278\3079 498.084 4/3 Counterschismic

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct