3079edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 3078edo 3079edo 3080edo →
Prime factorization 3079 (prime)
Step size 0.389737¢ 
Fifth 1801\3079 (701.916¢)
Semitones (A1:m2) 291:232 (113.4¢ : 90.42¢)
Consistency limit 9
Distinct consistency limit 9

3079 equal divisions of the octave (abbreviated 3079edo or 3079ed2), also called 3079-tone equal temperament (3079tet) or 3079 equal temperament (3079et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 3079 equal parts of about 0.39 ¢ each. Each step represents a frequency ratio of 21/3079, or the 3079th root of 2.

Theory

3079edo is consistent to the 9-odd-limit. The equal temperament tempers out 43046721/43025920, 1220703125/1219784832 and [51 -13 -1 -10 in the 7-limit. It supports acrosextilififths.

Prime harmonics

Approximation of prime harmonics in 3079edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.039 -0.084 +0.060 +0.160 +0.135 -0.116 -0.144 -0.018 +0.108 +0.012
Relative (%) +0.0 -10.0 -21.7 +15.4 +41.0 +34.6 -29.8 -36.9 -4.7 +27.7 +3.0
Steps
(reduced)
3079
(0)
4880
(1801)
7149
(991)
8644
(2486)
10652
(1415)
11394
(2157)
12585
(269)
13079
(763)
13928
(1612)
14958
(2642)
15254
(2938)

Subsets and supersets

3079edo is the 440th prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-4880 3079 [3079 4880]] 0.0122 0.0122 3.13
2.3.5 [-69 45 -1, [-50 -71 70 [3079 4880 7149]] 0.0203 0.0151 3.87
2.3.5.7 43046721/43025920, 1220703125/1219784832, [51 -13 -1 -10 [3079 4880 7149 8644]] 0.0099 0.0223 5.72

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 1278\3079 498.084 4/3 Counterschismic

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium
  • "mfdreamshoppedfashionforyou" from albumwithoutspaces (2024) – Spotify | Bandcamp | YouTube – acrosextilififths[13] in 3079edo tuning