3080edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 3079edo 3080edo 3081edo →
Prime factorization 23 × 5 × 7 × 11
Step size 0.38961¢ 
Fifth 1802\3080 (702.078¢) (→901\1540)
Semitones (A1:m2) 294:230 (114.5¢ : 89.61¢)
Consistency limit 7
Distinct consistency limit 7

3080 equal divisions of the octave (abbreviated 3080edo or 3080ed2), also called 3080-tone equal temperament (3080tet) or 3080 equal temperament (3080et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 3080 equal parts of about 0.39 ¢ each. Each step represents a frequency ratio of 21/3080, or the 3080th root of 2.

Harmonics

Approximation of odd harmonics in 3080edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.123 +0.180 +0.135 -0.144 -0.019 -0.138 -0.087 -0.150 +0.149 -0.132 +0.167
Relative (%) +31.5 +46.1 +34.7 -36.9 -4.9 -35.4 -22.3 -38.6 +38.3 -33.8 +42.9
Steps
(reduced)
4882
(1802)
7152
(992)
8647
(2487)
9763
(523)
10655
(1415)
11397
(2157)
12033
(2793)
12589
(269)
13084
(764)
13528
(1208)
13933
(1613)


Icon-Todo.png Todo: explain its xenharmonic value