18edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
m linking EDOs
-irrelevant shit
Line 226: Line 226:


EDOs: 31, 369, 400, 431, 462
EDOs: 31, 369, 400, 431, 462
==Scale tree==
If 4\7 (four degrees of 7EDO) is at one extreme and 3\5 (three degrees of 5EDO) is at the other, all other possible 5L 2s scales exist in a continuum between them. You can chop this continuum up by taking [[Mediant|"freshman sums"]] of the two edges - adding together the numerators, then adding together the denominators (i.e. adding them together as if you would be adding the complex numbers analogous real and imaginary parts). Thus, between 4\7 and 3\5 you have (4+3)\(7+5) = 7\12, seven degrees of 12EDO.
If we carry this freshman-summing out a little further, new, larger [[EDO]]s pop up in our continuum.
Generator range: 28.09524 cents (4\7/18 = 2\63) to 40 cents (3\5/18 = 1\30)
{| class="wikitable center-all"
! colspan="7" |Fifth
!Cents
!Comments
|-
| 4\7 || || || || ||  || || 38.0952||
|-
|  || || || || || ||27\47||38.2979||
|-
| || || || || ||23\40|| ||38.{{Overline|3}}||
|-
|  || || || || ||  ||42\73 ||38.3562||
|-
| || || ||  ||19\33 || || ||38.{{Overline|38}}||
|-
| ||  || ||  || || || 53\92||38.4058 ||
|-
|  || || ||  || ||34\59||  ||38.4181||
|-
| || || || || || || 49\85||38.4314 ||
|-
| || || ||15\26|| || || || 38.4615||
|-
| || || ||  || ||  ||56\97 ||38.4880||
|-
| || || ||  || ||41\71|| || 38.49765||
|-
| || || || || || ||67\116|| 38.50575||
|-
| || || || ||26\45|| || ||38.{{Overline|518}}||[[Flattone]] is in this region
|-
| || || || || || ||63\109||38.5321||
|-
| || || || || ||37\64|| ||38.5417||
|-
| || || || || || ||48\83||38.5542||
|-
| || ||11\19|| || || || ||38.5965||
|-
| || || || || || ||51\88||38.{{Overline|63}}||
|-
| || || || || ||40\69|| ||38.6473||
|-
| || || || || || ||69\119||38.6555||
|-
| || || || ||29\50|| || ||38.{{Overline|6}}||
|-
| || || || || || ||76\131||38.6768||[[Golden meantone]] (696.2145¢)
|-
| || || || || || 47\81|| ||38.6831||
|-
| || || || || ||  || 65\112||38.6905||
|-
| || || ||18\31|| || || ||38.7097||[[Meantone]] is in this region
|-
| || ||  || || ||  || 61\105||38.7302||
|-
| || || || ||  ||43\74|| ||38.{{Overline|738}}||
|-
| || ||  || || || ||68\117||38.7464||
|-
| || || || || 25\43|| || ||38.7597||
|-
| ||  || || || || ||57\98||38.7755||
|-
| || || || ||  ||32\55|| ||38.{{Overline|78}}||
|-
| || || || ||  || ||39\67||38.8060||
|-
| ||7\12|| || || || || || 38.{{Overline|8}}||
|-
| || || || || || || 38\65|| 38.9743||
|-
| ||  || || || ||31\53|| || 38.9937||The fifth closest to a just [[3/2]] for EDOs less than 200
|-
| || || || || ||  ||55\94||39.0071||[[Garibaldi]] / [[Cassandra]]
|-
| || || || ||24\41|| || ||39.0244||
|-
| || ||  || || || ||65\111 ||39.{{Overline|039}} ||
|-
| || || || || ||41\70|| ||39.0476||
|-
| || || || || || ||58\99||39.0572||
|-
| || || ||17\29|| || || ||39.0805||
|-
| || || || || || ||61\104||39.1026||
|-
| || || || || ||44\75|| ||39.{{Overline|1}}||
|-
| || || || || || ||71\121||39.1185||Golden neogothic (704.0956¢)
|-
| || || || ||27\46|| || ||39.1304||[[Neogothic]] is in this region
|-
| || || || || || ||64\109||39.1437||
|-
| || || || || ||37\63|| ||39.1534||
|-
| || || || || || ||47\80||39.1{{Overline|6}}||
|-
| || ||10\17|| || || || ||39.2157||
|-
| || || || || || ||43\73||39.2694||
|-
| || || || || ||33\56|| ||39.2857||
|-
| || || || || || ||56\95||39.29825||
|-
| || || || ||23\39|| || ||39.3162||
|-
| || || || || || ||59\100||39.{{Overline|3}}||
|-
| || || || || ||36\61|| ||39.3443||
|-
| || || || || || ||49\83||39.3574||
|-
| || || ||13\22|| || || ||39.{{Overline|39}}||[[Archy]] is in this region
|-
| || || || || || ||42\71||39.4366||
|-
| || || || || ||29\49|| ||39.4558||
|-
| || || || || || ||45\76||39.4737||
|-
| || || || ||16\27|| || ||39.5062||
|-
| || || || || || ||35\59||39.5480||
|-
| || || || || ||19\32|| ||39.58{{Overline|3}}||
|-
| || || || || || ||22\37||39.{{Overline|639}}||
|-
|3\5|| || || || || || ||40.0000||
|}Tunings above 7\12 on this chart are called "negative tunings" (as they lessen the size of the fifth) and include meantone systems such as 1/3-comma (close to 11\19) and 1/4-comma (close to 18\31). As these tunings approach 4\7, the majors become flatter and the minors become sharper.
[[Category:Edf]]
[[Category:Edonoi]]

Revision as of 13:23, 7 May 2024

← 17edf 18edf 19edf →
Prime factorization 2 × 32
Step size 38.9975 ¢ 
Octave 31\18edf (1208.92 ¢)
Twelfth 49\18edf (1910.88 ¢)
Consistency limit 4
Distinct consistency limit 4

18EDF is the equal division of the just perfect fifth into 18 parts of 38.9975 cents each, corresponding to 30.7712 edo. It is related to the regular temperament which tempers out 2401/2400 and 8589934592/8544921875 in the 7-limit; 5632/5625, 46656/46585, and 166698/166375 in the 11-limit, which is supported by 31edo, 369edo, 400edo, 431edo, and 462edo.

Lookalikes: 31edo, 49edt

Intervals

degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 38.9975 45/44
2 77.995
3 116.9925 16/15
4 155.99 128/117
5 194.9875 28/25
6 233.985 8/7
7 272.9825 7/6
8 311.98 6/5
9 350.9775 60/49, 49/40
10 389.975 5/4
11 428.9725 9/7
12 467.97
13 506.9675 75/56
14 545.965
15 584.9625
16 623.96
17 662.9575 22/15
18 701.955 exact 3/2 just perfect fifth
19 740.9525 135/88
20 779.95
21 818.9475 8/5
22 857.945 64/39
23 896.9425 42/25
24 935.94 12/7
25 974.9375 7/4
26 1013.935 9/5
27 1052.9325 90/49, 147/80
28 1091.93 15/8
29 1130.9275 27/14
30 1169.925
31 1208.9225 225/112
32 1247.92
33 1286.9175
34 1325.915
35 1364.9125
36 1403.91 exact 9/4

Related regular temperaments

The rank-two regular temperament supported by 31edo and 369edo has three equal divisions of the interval which equals an octave minus the step interval of 18EDF as a generator.

7-limit 31&369

Commas: 2401/2400, 8589934592/8544921875

POTE generator: ~5/4 = 386.997

Mapping: [<1 19 2 7|, <0 -54 1 -13|]

EDOs: 31, 369, 400, 431, 462

11-limit 31&369

Commas: 2401/2400, 5632/5625, 46656/46585

POTE generator: ~5/4 = 386.999

Mapping: [<1 19 2 7 37|, <0 -54 1 -13 -104|]

EDOs: 31, 369, 400, 431, 462

13-limit 31&369

Commas: 1001/1000, 1716/1715, 4096/4095, 46656/46585

POTE generator: ~5/4 = 387.003

Mapping: [<1 19 2 7 37 -35|, <0 -54 1 -13 -104 120|]

EDOs: 31, 369, 400, 431, 462