Module:Utils: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
In prime_factorization: evaluate the input at the public level
Sintel (talk | contribs)
merge changes from dev
Line 1: Line 1:
local getArgs = require('Module:Arguments').getArgs
local get_args = require("Module:Arguments").getArgs
local p = {}
local p = {}


-- check if a table contains x
-- check if a table contains x
function p.table_contains(tbl, x)
function p.table_contains(tbl, x)
    for i = 1, #tbl do
for i = 1, #tbl do
        if x == tbl[i] then  
if x == tbl[i] then
            return true  
return true
        end
end
    end
end
    return false
return false
end
end


Line 25: Line 25:
function p.eval_num_arg(input, def_value)
function p.eval_num_arg(input, def_value)
local result = input
local result = input
if type(input) ~= 'number' then
if type(input) ~= "number" then
result = def_value
result = def_value
if type(input) == 'string' then
if type(input) == "string" then
-- check for fraction notation
-- check for fraction notation
if input:match('/') == '/' then
if input:match("/") == "/" then
local denominator = 1
local numerator, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
input, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
result = (tonumber(numerator) or def_value) / (tonumber(denominator) or 1)
result = (tonumber(input) or def_value)/(tonumber(denominator) or 1)
else
else
input = input:match("^%s*(.-)%s*$")
input = input:match("^%s*(.-)%s*$")
Line 44: Line 43:
-- return logarithm base b of x
-- return logarithm base b of x
function p.log(frame)
function p.log(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._log(args[1], args[2])
return p._log(args[1], args[2])
end
end
 
local LN_2 = math.log(2)
-- return logarithm base 2 of x
function p.log2(x)
return math.log(x) / LN_2
end


function p._log(x, b)
function p._log(x, b)
Line 53: Line 58:
-- b defaults to 2 ("octave")
-- b defaults to 2 ("octave")
b = p.eval_num_arg(b, 2)
b = p.eval_num_arg(b, 2)
return math.log(x)/math.log(b)
return math.log(x) / math.log(b)
end
end


-- return greatest common divisor of a and b
-- return greatest common divisor of a and b
function p.gcd(frame)
function p.gcd(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._gcd(args[1], args[2])
return p._gcd(args[1], args[2])
end
end
Line 66: Line 71:
return p._gcd(b, a % b)
return p._gcd(b, a % b)
else
else
return math.abs (a)
return math.abs(a)
end
end
end
end
Line 72: Line 77:
-- return x rounded to places decimal places
-- return x rounded to places decimal places
function p.round_dec(frame)
function p.round_dec(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._round_dec(args[1], args[2])
return p._round_dec(args[1], args[2])
end
end
Line 81: Line 86:
-- places defaults to 0
-- places defaults to 0
places = p.eval_num_arg(places, 0)
places = p.eval_num_arg(places, 0)
return math.floor (x * 10^places + 0.5)/10^places
return math.floor(x * 10 ^ places + 0.5) / 10 ^ places
end
end


-- return x rounded to a precision of prec significant figures
-- return x rounded to a precision of prec significant figures
function p.round(frame)
function p.round(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._round(args[1], args[2])
return p._round(args[1], args[2])
end
end


function p._round(x, prec)
function p._round(x, prec)
Line 103: Line 108:


-- cached list of primes for is_prime
-- cached list of primes for is_prime
local primes = {
local primes_cache = {
[0] = false,
[0] = false,
[1] = false
[1] = false,
}
}


-- returns true if integer n is prime; cannot be used with {{#invoke:}}
-- returns true if integer n is prime; cannot be used with {{#invoke:}}
function p.is_prime(n)
function p.is_prime(n)
local cached = primes[n]
local cached = primes_cache[n]
if cached ~= nil then
if cached ~= nil then
return cached
return cached
Line 116: Line 121:
for i = 2, math.sqrt(n) do
for i = 2, math.sqrt(n) do
if n % i == 0 then
if n % i == 0 then
primes[n] = false
primes_cache[n] = false
return false
return false
end
end
end
end
primes[n] = true
primes_cache[n] = true
return true  
return true
end
end


Line 147: Line 152:
-- returns prime factorization of integer n > 2 (with wiki markup for exponents)
-- returns prime factorization of integer n > 2 (with wiki markup for exponents)
function p.prime_factorization(frame)
function p.prime_factorization(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._prime_factorization(p.eval_num_arg(args[1], 12)) -- default to 12
return p._prime_factorization(p.eval_num_arg(args[1], 12)) -- default to 12
end
end
Line 162: Line 167:
factors[#factors + 1] = i
factors[#factors + 1] = i
powers[#factors] = 0
powers[#factors] = 0
while new_number % i == 0 do  
while new_number % i == 0 do
powers[#factors] = powers[#factors] + 1
powers[#factors] = powers[#factors] + 1
new_number = new_number / i
new_number = new_number / i
Line 182: Line 187:
-- returns signum(x); cannot be used with {{#invoke:}}
-- returns signum(x); cannot be used with {{#invoke:}}
function p.signum(x)
function p.signum(x)
if type(x) ~= 'number' then
if type(x) ~= "number" then
return 0
return 0
end
end
if x > 0 then return 1 end
if x > 0 then
if x < 0 then return -1 end
return 1
end
if x < 0 then
return -1
end
return 0
return 0
end
end
Line 225: Line 234:
return d
return d
end
end
-- stylua: ignore
p.primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
  101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
  211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271}


-- get monzo of n/d
-- get monzo of n/d
-- e.g. for 3/2: {[2] = -1, [3] = 1}
-- e.g. for 3/2: {[2] = -1, [3] = 1}
function p.get_monzo(n, d)
function p.get_monzo(n, d)
local primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
  101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
  211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271}
local n_pf = p.prime_factorization_raw(n)
local n_pf = p.prime_factorization_raw(n)
local d_pf = p.prime_factorization_raw(d)
local d_pf = p.prime_factorization_raw(d)
local result = {}
local result = {}
for i=1,#primes do
for i = 1, #p.primes do
local t = (n_pf[primes[i]] or 0) - (d_pf[primes[i]] or 0)
local t = (n_pf[p.primes[i]] or 0) - (d_pf[p.primes[i]] or 0)
if t ~= 0 then
if t ~= 0 then
result[primes[i]] = t
result[p.primes[i]] = t
end
end
end
end

Revision as of 20:14, 1 April 2024

Module documentation[view] [edit] [history] [purge]
Lua error in Module:Variable_arguments at line 63: attempt to call field 'trim' (a nil value).

This module provides several mathematical functions which are likely to be used frequently on the Xenharmonic Wiki.

Namely, the functions in this module can be called from other modules by using require("Module:Utils") and calling the underscore-prefixed functions.

Functions

trim(s)
Removes leading and trailing whitespaces (but not interior ones) from a string.
_yesno(frame)
Allows Module:Yesno, which is not invokable directly, to be accessed by templates through Template:Yesno.
table_contains(tbl, x)*
Check if table contains x.
index_of(array, index)*
Return the first index with the given value (or nil if not found).
value_provided(s)*
Checks if s is a non-empty string.
wlink(a, b)
Provides a link to Wikipedia.
eval_num_arg(input, def_value)*
Checks if input is a number; on error, use def_value.
log(x, b)
Returns the logarithm base b of x. Parameter b defaults to base 2 (octave) if it is omitted.
gcd(a, b)
Returns the greatest common divisor of a and b.
round_dec(x, places)
Returns x rounded to a precision of places decimal places. Parameter places defaults to 0 if it is omitted.
round(x, prec)
Returns x rounded to a precision of prec significant figures. Parameter prec defaults to 6 if it is omitted.
is_prime(n)*
Returns true if the given integer n is a prime number.
prime_factorization(n)
Returns the prime factorization of the given integer n using the exponential form (in wikitext).
prime_factorization_raw(n)*
Returns a table encoding the prime factorization of n.
signum(x)*
Returns 1 for positive numbers, −1 for negative ones, and 0 for zero and non-integer inputs.
next_young_diagram(d)
Returns the next Young diagram of the same size; the first one is [N], the last one is Lua error in Module:Variable_arguments at line 93: attempt to call field 'trim' (a nil value).. After the last one, nil is returned. The input table is modified.


* These functions are designed to be used by other modules only; they cannot be called with {{#invoke: }}.


local get_args = require("Module:Arguments").getArgs
local p = {}

-- check if a table contains x
function p.table_contains(tbl, x)
	for i = 1, #tbl do
		if x == tbl[i] then
			return true
		end
	end
	return false
end

-- return the first index with the given value (or nil if not found)
function p.index_of(array, value)
	for i, v in ipairs(array) do
		if v == value then
			return i
		end
	end
	return nil
end

-- evaluate input on error use default; cannot be used with {{#invoke:}}
function p.eval_num_arg(input, def_value)
	local result = input
	if type(input) ~= "number" then
		result = def_value
		if type(input) == "string" then
			-- check for fraction notation
			if input:match("/") == "/" then
				local numerator, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
				result = (tonumber(numerator) or def_value) / (tonumber(denominator) or 1)
			else
				input = input:match("^%s*(.-)%s*$")
				result = tonumber(input)
			end
		end
	end
	return result
end

-- return logarithm base b of x
function p.log(frame)
	local args = get_args(frame)
	return p._log(args[1], args[2])
end

local LN_2 = math.log(2)
-- return logarithm base 2 of x
function p.log2(x)
	return math.log(x) / LN_2
end

function p._log(x, b)
	-- x defaults to 0
	x = p.eval_num_arg(x, 0)
	-- b defaults to 2 ("octave")
	b = p.eval_num_arg(b, 2)
	return math.log(x) / math.log(b)
end

-- return greatest common divisor of a and b
function p.gcd(frame)
	local args = get_args(frame)
	return p._gcd(args[1], args[2])
end

function p._gcd(a, b)
	if b ~= 0 then
		return p._gcd(b, a % b)
	else
		return math.abs(a)
	end
end

-- return x rounded to places decimal places
function p.round_dec(frame)
	local args = get_args(frame)
	return p._round_dec(args[1], args[2])
end

function p._round_dec(x, places)
	-- x defaults to 0
	x = p.eval_num_arg(x, 0)
	-- places defaults to 0
	places = p.eval_num_arg(places, 0)
	return math.floor(x * 10 ^ places + 0.5) / 10 ^ places
end

-- return x rounded to a precision of prec significant figures
function p.round(frame)
	local args = get_args(frame)
	return p._round(args[1], args[2])
end

function p._round(x, prec)
	-- x defaults to 0
	x = p.eval_num_arg(x, 0)
	-- prec defaults to 6
	prec = p.eval_num_arg(prec, 6)
	if x == 0 then
		return 0
	else
		return p._round_dec(x, prec - math.floor(p._log(math.abs(x), 10)) - 1)
	end
end

-- cached list of primes for is_prime
local primes_cache = {
	[0] = false,
	[1] = false,
}

-- returns true if integer n is prime; cannot be used with {{#invoke:}}
function p.is_prime(n)
	local cached = primes_cache[n]
	if cached ~= nil then
		return cached
	end
	for i = 2, math.sqrt(n) do
		if n % i == 0 then
			primes_cache[n] = false
			return false
		end
	end
	primes_cache[n] = true
	return true
end

-- returns prime factorization of integer n > 1; cannot be used with {{#invoke:}}
-- note: the order of keys is not specified for Lua tables
function p.prime_factorization_raw(n)
	local factors = {}
	local m = n
	for i = 2, math.sqrt(n) + 1 do
		while m % i == 0 do
			factors[i] = factors[i] or 0
			factors[i] = factors[i] + 1
			m = m / i
		end
		if m == 1 then
			break
		end
	end
	if m > 1 then
		factors[m] = factors[m] or 1
	end
	return factors
end

-- returns prime factorization of integer n > 2 (with wiki markup for exponents)
function p.prime_factorization(frame)
	local args = get_args(frame)
	return p._prime_factorization(p.eval_num_arg(args[1], 12)) -- default to 12
end

function p._prime_factorization(n)
	if n <= 1 then
		return "n/a"
	end
	local factors, powers = {}, {}
	local new_number = n
	for i = 2, n do
		if p.is_prime(i) then
			if new_number % i == 0 then
				factors[#factors + 1] = i
				powers[#factors] = 0
				while new_number % i == 0 do
					powers[#factors] = powers[#factors] + 1
					new_number = new_number / i
				end
				if powers[#factors] > 1 then
					powers[#factors] = factors[#factors] .. "<sup>" .. powers[#factors] .. "</sup>"
				else
					powers[#factors] = factors[#factors]
				end
			end
		end
		if new_number == 1 then
			break
		end
	end
	return table.concat(powers, " × ")
end

-- returns signum(x); cannot be used with {{#invoke:}}
function p.signum(x)
	if type(x) ~= "number" then
		return 0
	end
	if x > 0 then
		return 1
	end
	if x < 0 then
		return -1
	end
	return 0
end

-- returns the next Young diagram of the same size or nil; cannot be used with {{#invoke:}}
-- modifies the input table
function p.next_young_diagram(d)
	if #d == 0 then
		return nil
	end
	local i_from = nil
	local size = 0
	for i = #d, 1, -1 do
		if d[i] > 1 then
			i_from = i
			break
		end
		size = size + d[i]
	end
	if i_from == nil then
		return nil
	end
	d[i_from] = d[i_from] - 1
	size = size + 1
	-- repacking the tail
	local max_d = d[i_from]
	for i = i_from + 1, #d + 1 do
		if size >= max_d then
			d[i] = max_d
			size = size - max_d
		elseif size > 0 then
			d[i] = size
			size = 0
		else
			d[i] = nil
		end
	end
	return d
end

-- stylua: ignore
p.primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
			   101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
			   211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271}

-- get monzo of n/d
-- e.g. for 3/2: {[2] = -1, [3] = 1}
function p.get_monzo(n, d)
	local n_pf = p.prime_factorization_raw(n)
	local d_pf = p.prime_factorization_raw(d)
	local result = {}
	for i = 1, #p.primes do
		local t = (n_pf[p.primes[i]] or 0) - (d_pf[p.primes[i]] or 0)
		if t ~= 0 then
			result[p.primes[i]] = t
		end
	end
	return result
end

return p