User:Xenllium/Xenllium's circulating scales: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Xenllium (talk | contribs)
No edit summary
Line 24: Line 24:
</pre>
</pre>


{| class="wikitable center-all left-all"
{| class="wikitable center-all"
|+ Sizes and occurrences of fifth and fourth
|+ Sizes and occurrences of fifth and fourth
! colspan="4" | Fifth (7-step)
! colspan="4" | Fifth (7-step)
Line 63: Line 63:
| <math>4/3</math>
| <math>4/3</math>
| 498.04500
| 498.04500
| +0.00000
|}
{| class="wikitable center-all left-4 left-8"
|+ Sizes and occurrences of major third and minor third
! colspan="4" | Major third (4-step)
! colspan="4" | Minor third (3-step)
|-
! Occurrences
! Ratio
! Cents
! Error <br>from 5/4
! Occurrences
! Ratio
! Cents
! Error <br>from 6/5
|-
| C–E <br> G–B
| <math>5/4</math>
| 386.31371
| +0.00000
| rowspan="2" | C–E♭ <br> C♯–E <br> G–B♭ <br> G♯–B
| rowspan="2" | <math>32/27</math>
| rowspan="2" | 294.13500
| rowspan="2" | &minus;21.50629
|-
| D–F♯ <br> F–A
| <math>\sqrt{(45/32)^{2}}</math>
| 393.48248
| +7.16876
|-
| A–C♯ <br> B♭–D
| <math>\sqrt{32805/16384}</math>
| 400.65124
| +14.33753
| rowspan="2" | E♭–G♭ <br> F–A♭ <br> B♭–D♭
| rowspan="2" | <math>1215/1024</math>
| rowspan="2" | 296.08872
| rowspan="2" | &minus;19.55257
|-
| rowspan="3" | D♭–F <br> G♭–B♭ <br> A♭–C <br> B–D♯
| rowspan="3" | <math>405/256</math>
| rowspan="3" | 405.86628
| rowspan="3" | +19.55257
|-
| D–F <br> F♯–A
| <math>\sqrt{2048/1215}</math>
| 301.30376
| &minus;14.33753
|-
| rowspan="2" | A–C <br> B–D
| rowspan="2" | <math>\sqrt{128/75}</math>
| rowspan="2" | 308.47252
| rowspan="2" | &minus;7.16876
|-
| rowspan="2" | E♭–G <br> E–G♯
| rowspan="2" | <math>81/64</math>
| rowspan="2" | 407.82000
| rowspan="2" | +21.50629
|-
| E–G
| <math>6/5</math>
| 315.64129
| +0.00000
| +0.00000
|}
|}

Revision as of 11:48, 3 January 2024

Below are listed circulating scales introduced by Xenllium.

Xentwelve

Xentwelve is a 12-tone circulating scale based on 12 equal temperament. In summary, it is close to 1/3-comma meantone in the natural keys and Pythagorean tuning in the remote keys. The generator is a perfect fifth, which comes in three sizes, with eight pure fifths (at C–G, C♯–G♯, E♭–B♭, E–B, F–C, F♯–C♯, B♭–F and B–F♯, frequency ratio 3/2), three 1/3-comma meantone fifths (at D–A, G–D and A–E, frequency ratio (10/3)^(1/3)), and one narrow schismic fifth (at G♯–D♯ (A♭–E♭), frequency ratio 16384/10935). It derives two major thirds exact 5/4 (at C–E and G–B) and one minor third exact 6/5 (at E–G).

! xentwelve_a.scl
!
Xentwelve, Xenllium's 12-tone circulating scale, Central A
 12
!
 104.56252207087
 196.74123853187
 308.47252380165
 400.65124026264
 505.21376233352
 602.60752120549
 694.78623766648
 806.51752293626
 898.69623939726
 1010.42752466704
 1102.60624112803
 1200.
Sizes and occurrences of fifth and fourth
Fifth (7-step) Fourth (5-step)
Occurrences Ratio Cents Error
from 3/2
Occurrences Ratio Cents Error
from 4/3
D–A
G–D
A–E
[math]\displaystyle{ \sqrt{10/3} }[/math] 694.78624 −7.16876 D–G
E–A
A–D
[math]\displaystyle{ \sqrt{12/5} }[/math] 505.21376 +7.16876
G♯–D♯
(A♭–E♭)
[math]\displaystyle{ 16384/10935 }[/math] 700.00128 −1.95372 D♯–G♯
(E♭–A♭)
[math]\displaystyle{ 10935/8192 }[/math] 499.99872 +1.95372
C–G
C♯–G♯
E♭–B♭
E–B
F–C
F♯–C♯
B♭–F
B–F♯
[math]\displaystyle{ 3/2 }[/math] 701.95500 +0.00000 C–F
C♯–F♯
F–B♭
F♯–B
G–C
G♯–C♯
B♭–E♭
B–E
[math]\displaystyle{ 4/3 }[/math] 498.04500 +0.00000
Sizes and occurrences of major third and minor third
Major third (4-step) Minor third (3-step)
Occurrences Ratio Cents Error
from 5/4
Occurrences Ratio Cents Error
from 6/5
C–E
G–B
[math]\displaystyle{ 5/4 }[/math] 386.31371 +0.00000 C–E♭
C♯–E
G–B♭
G♯–B
[math]\displaystyle{ 32/27 }[/math] 294.13500 −21.50629
D–F♯
F–A
[math]\displaystyle{ \sqrt{(45/32)^{2}} }[/math] 393.48248 +7.16876
A–C♯
B♭–D
[math]\displaystyle{ \sqrt{32805/16384} }[/math] 400.65124 +14.33753 E♭–G♭
F–A♭
B♭–D♭
[math]\displaystyle{ 1215/1024 }[/math] 296.08872 −19.55257
D♭–F
G♭–B♭
A♭–C
B–D♯
[math]\displaystyle{ 405/256 }[/math] 405.86628 +19.55257
D–F
F♯–A
[math]\displaystyle{ \sqrt{2048/1215} }[/math] 301.30376 −14.33753
A–C
B–D
[math]\displaystyle{ \sqrt{128/75} }[/math] 308.47252 −7.16876
E♭–G
E–G♯
[math]\displaystyle{ 81/64 }[/math] 407.82000 +21.50629
E–G [math]\displaystyle{ 6/5 }[/math] 315.64129 +0.00000