Superpyth–22 equivalence continuum: Difference between revisions
Rework |
Royalmilktea (talk | contribs) No edit summary |
||
Line 37: | Line 37: | ||
| 5120000/4782969 | | 5120000/4782969 | ||
| {{Monzo| 13 -14 4 }} | | {{Monzo| 13 -14 4 }} | ||
|- | |||
|5 | |||
|22 & 3cc | |||
| | |||
| {{Monzo| 25 -23 5 }} | |||
|- | |- | ||
|… | |… | ||
Line 48: | Line 53: | ||
| {{monzo| 12 -9 1 }} | | {{monzo| 12 -9 1 }} | ||
|} | |} | ||
Examples of temperaments with fractional values of ''n'': | |||
* 22 & 39cc (''n'' = 1/2 = 0.5) | |||
* 22 & 29c (''n'' = 3/2 = 1.5) | |||
* [[Hendecatonic]] (''n'' = 11/5 = 2.2) | |||
* [[Escapade]] (''n'' = 9/4 = 2.25) | |||
* [[Kwazy]] (''n'' = 16/7 = 2.285714...) | |||
* [[Orson]] (''n'' = 7/3 = 2.333...) | |||
* [[Magic]] (''n'' = 5/2 = 2.5) | |||
We may also invert the continuum by setting ''m'' such that 1/''m'' + 1/''n'' = 1. The just value of ''m'' is 1.778495… | We may also invert the continuum by setting ''m'' such that 1/''m'' + 1/''n'' = 1. The just value of ''m'' is 1.778495… | ||
Line 90: | Line 106: | ||
| 8388608/7971615 | | 8388608/7971615 | ||
| {{Monzo| 23 -13 -1 }} | | {{Monzo| 23 -13 -1 }} | ||
|} | |} | ||
[[Category:22edo]] | [[Category:22edo]] | ||
[[Category:Equivalence continua]] | [[Category:Equivalence continua]] |
Revision as of 01:42, 11 May 2023
The superpyth-22 equivalence continuum is a continuum of 5-limit temperaments which equate a number of superpyth commas, 20480/19683 = [12 -9 1⟩, with the 22-comma, [35 -22⟩. This continuum is theoretically interesting in that these are all 5-limit temperaments supported by 22edo.
All temperaments in the continuum satisfy (20480/19683)n ~ 250/243. Varying n results in different temperaments listed in the table below. It converges to 5-limit superpyth as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 22edo due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them. The just value of n is approximately 2.284531…, and temperaments having n near this value tend to be the most accurate ones.
n | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
0 | 22 & 22c | [35 -22⟩ | |
1 | Quasisuper | 8388608/7971615 | [23 -13 -1⟩ |
2 | Diaschismic | 2048/2025 | [11 -4 -2⟩ |
3 | Porcupine | 250/243 | [1 -5 3⟩ |
4 | Comic | 5120000/4782969 | [13 -14 4⟩ |
5 | 22 & 3cc | [25 -23 5⟩ | |
… | … | … | … |
∞ | Superpyth | 20480/19683 | [12 -9 1⟩ |
Examples of temperaments with fractional values of n:
- 22 & 39cc (n = 1/2 = 0.5)
- 22 & 29c (n = 3/2 = 1.5)
- Hendecatonic (n = 11/5 = 2.2)
- Escapade (n = 9/4 = 2.25)
- Kwazy (n = 16/7 = 2.285714...)
- Orson (n = 7/3 = 2.333...)
- Magic (n = 5/2 = 2.5)
We may also invert the continuum by setting m such that 1/m + 1/n = 1. The just value of m is 1.778495…
m | Temperament | Comma | |
---|---|---|---|
Ratio | Monzo | ||
0 | 22 & 22c | [35 -22⟩ | |
1 | Superpyth | 20480/19683 | [12 -9 1⟩ |
2 | Diaschismic | 2048/2025 | [11 -4 -2⟩ |
3 | 22 & 29c | [34 -17 -3⟩ | |
… | … | … | … |
∞ | Quasisuper | 8388608/7971615 | [23 -13 -1⟩ |