439edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Regular temperament properties: 2.3.15 is equivalent to 2.3.5 and 2.3.15.35 is equivalent to 2.3.5.7. Rework to address alternative vals
Theory: rework to address alternative vals
Line 2: Line 2:
{{EDO intro|439}}
{{EDO intro|439}}
== Theory ==
== Theory ==
439et tempers out [[703125/702464]] in the 7-limit; 55296000/55240493, 100663296/100656875, 820125/819896, 2097152/2096325, 759375/758912, [[131072/130977]], 352947/352000, 85937500/85766121, 1879453125/1879048192, 184549376/184528125, 184877/184320, [[3025/3024]] and [[1771561/1771470]] in the 11-limit.
439edo is in[[consistent]] in the 5-odd-limit. In the 7-limit, the [[patent val]] {{val| 439 696 1019 1232 }}, and the 439cd val {{val| 439 696 '''1020''' '''1233''' }} are about as viable.
===Prime harmonics===
 
The patent val tempers out [[10976/10935]], [[15625/15552]] and [[703125/702464]] in the 7-limit; [[3025/3024]], 4375/4356, 14700/14641, 59290/59049, [[131072/130977]], and 184877/184320 in the 11-limit.
 
The 439cd val tempers out [[3136/3125]], 2097152/2083725, and 4096000/4084101 in the 7-limit; 3136/3125, 15488/15435, [[16384/16335]], [[19712/19683]], 24057/24010, 43923/43750, 43923/43904, and 46656/46585 in the 11-limit.  
 
=== Prime harmonics ===
{{Harmonics in equal|439}}
{{Harmonics in equal|439}}
===Subsets and supersets===
 
=== Subsets and supersets ===
439edo is the 85th [[prime edo]].
439edo is the 85th [[prime edo]].
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"

Revision as of 19:59, 22 April 2023

← 438edo 439edo 440edo →
Prime factorization 439 (prime)
Step size 2.73349 ¢ 
Fifth 257\439 (702.506 ¢)
Semitones (A1:m2) 43:32 (117.5 ¢ : 87.47 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

439edo is inconsistent in the 5-odd-limit. In the 7-limit, the patent val 439 696 1019 1232], and the 439cd val 439 696 1020 1233] are about as viable.

The patent val tempers out 10976/10935, 15625/15552 and 703125/702464 in the 7-limit; 3025/3024, 4375/4356, 14700/14641, 59290/59049, 131072/130977, and 184877/184320 in the 11-limit.

The 439cd val tempers out 3136/3125, 2097152/2083725, and 4096000/4084101 in the 7-limit; 3136/3125, 15488/15435, 16384/16335, 19712/19683, 24057/24010, 43923/43750, 43923/43904, and 46656/46585 in the 11-limit.

Prime harmonics

Approximation of prime harmonics in 439edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.55 -0.89 -1.17 +0.85 -1.35 -1.08 +0.44 +0.43 +0.95 +0.29
Relative (%) +0.0 +20.1 -32.6 -42.9 +31.0 -49.3 -39.6 +16.0 +15.6 +34.6 +10.8
Steps
(reduced)
439
(0)
696
(257)
1019
(141)
1232
(354)
1519
(202)
1624
(307)
1794
(38)
1865
(109)
1986
(230)
2133
(377)
2175
(419)

Subsets and supersets

439edo is the 85th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [696 -439 439 696] -0.1737 0.1737 6.36
2.3.5 15625/15552, [115 -74 1 439 696 1019] (439) +0.0122 0.2988 10.9
2.3.5.7 10976/10935, 15625/15552, [-25 6 -3 8 439 696 1019 1232] (439) +0.1135 0.3127 11.4
2.3.5 [24 -21 4, [36 11 -23 439 696 1020] (439c) -0.3801 0.3244 11.9
2.3.5.7 3136/3125, 2097152/2083725, 43046721/42875000 439 696 1020 1233] (439cd) -0.4241 0.2911 10.7