1553edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|1553}} == Theory == 1553et tempers out 200120949/200000000 in the 7-limit; 759375/758912, 2359296/2358125, 369140625/369098752 and 102487/102400 in..."
 
Theory: rework
Line 2: Line 2:
{{EDO intro|1553}}
{{EDO intro|1553}}
== Theory ==
== Theory ==
1553et tempers out 200120949/200000000 in the 7-limit; 759375/758912, 2359296/2358125, 369140625/369098752 and 102487/102400 in the 11-limit; 200000/199927, 34034175/34027136, 59535/59488, 105644/105625, 8859375/8859136, 75000000/74942413, 40656/40625, 1716/1715, 196625/196608 and 823875/823543 in the 13-limit.
1553edo is only [[consistent]] to the 5-odd-limit and harmonic 3 is about halfway between its steps. Assume the [[patent val]], 1553et tempers out 200120949/200000000 in the 7-limit; 102487/102400, 759375/758912, 2359296/2358125, and 369140625/369098752 in the 11-limit; 1716/1715, 40656/40625, 59535/59488, 105644/105625, 196625/196608, 200000/199927, 823875/823543, 8859375/8859136, 34034175/34027136, and 75000000/74942413, in the 13-limit.
===Subsets and supersets===
 
1553edo is the 245th [[prime edo]].
=== Odd harmonics ===
===Odd harmonics===
{{Harmonics in equal|1553}}
{{Harmonics in equal|1553}}
=== Subsets and supersets ===
1553edo is the 245th [[prime edo]]. 3106edo, which doubles it, provides a good correction to the harmonic 3.


==Regular temperament properties==
==Regular temperament properties==

Revision as of 04:32, 18 April 2023

← 1552edo 1553edo 1554edo →
Prime factorization 1553 (prime)
Step size 0.772698 ¢ 
Fifth 908\1553 (701.61 ¢)
Semitones (A1:m2) 144:119 (111.3 ¢ : 91.95 ¢)
Dual sharp fifth 909\1553 (702.382 ¢)
Dual flat fifth 908\1553 (701.61 ¢)
Dual major 2nd 264\1553 (203.992 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

1553edo is only consistent to the 5-odd-limit and harmonic 3 is about halfway between its steps. Assume the patent val, 1553et tempers out 200120949/200000000 in the 7-limit; 102487/102400, 759375/758912, 2359296/2358125, and 369140625/369098752 in the 11-limit; 1716/1715, 40656/40625, 59535/59488, 105644/105625, 196625/196608, 200000/199927, 823875/823543, 8859375/8859136, 34034175/34027136, and 75000000/74942413, in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 1553edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.345 +0.035 +0.137 +0.082 -0.384 +0.168 -0.310 +0.132 -0.024 -0.208 -0.071
Relative (%) -44.7 +4.6 +17.8 +10.6 -49.7 +21.7 -40.1 +17.0 -3.1 -26.9 -9.2
Steps
(reduced)
2461
(908)
3606
(500)
4360
(1254)
4923
(264)
5372
(713)
5747
(1088)
6067
(1408)
6348
(136)
6597
(385)
6821
(609)
7025
(813)

Subsets and supersets

1553edo is the 245th prime edo. 3106edo, which doubles it, provides a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-2461 1553 1553 2461] 0.1089 0.1089 14.09
2.3.5 1224440064/1220703125, [-201 99 19 1553 2461 3606] 0.0675 0.1064 13.77
2.3.5.7 200120949/200000000, 2579890176/2573571875, 23066015625/23018340352 1553 2461 3606 4360] 0.0384 0.1051 13.60
2.3.5.7.11 24057/24010, 759375/758912, 2359296/2358125, 992436543/991232000 1553 2461 3606 4360 5372] 0.0529 0.0984 12.73
2.3.5.7.11.13 729/728, 1716/1715, 40656/40625, 196625/196608, 14085981/14080000 1553 2461 3606 4360 5372 5747] 0.0366 0.0970 12.55
2.3.5.7.11.13.17 729/728, 1716/1715, 1089/1088, 14400/14399, 27648/27625, 14085981/14080000 1553 2461 3606 4360 5372 5747 6348] 0.0267 0.0930 12.04
2.3.5.7.11.13.17.19 729/728, 1716/1715, 1089/1088, 5985/5984, 4200/4199, 21888/21875, 287469/287375 1553 2461 3606 4360 5372 5747 6348 6597] 0.0241 0.0872 11.29