6edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
CompactStar (talk | contribs)
No edit summary
CompactStar (talk | contribs)
No edit summary
Line 9: Line 9:
! cents ~ cents octave-reduced
! cents ~ cents octave-reduced
! approximate ratios
! approximate ratios
! 2L 2s notation
! [[1L 3s (fifth-equivalent)|Neptunian]] notation
|-
|-
| 0
| 0
Line 19: Line 19:
| 117
| 117
| [[16/15]], [[15/14]]
| [[16/15]], [[15/14]]
| C#, Db
| C#
|-
|-
| 2
| 2
| 234
| 234
| [[8/7]]
| [[8/7]]
| D
| Db
|-
|-
| 3
| 3
| 351
| 351
| [[11/9]], [[27/22]]
| [[11/9]], [[27/22]]
| E
| D
|-
|-
| 4
| 4
| 468
| 468
| [[21/16]]
| [[21/16]]
| E#, Fb
| E
|-
|-
| 5
| 5
Line 49: Line 49:
| 819
| 819
| [[8/5]], [[21/13]]
| [[8/5]], [[21/13]]
| C#, Db
| C#
|-
|-
| 8
| 8
| 936
| 936
| [[12/7]], [[55/32]]
| [[12/7]], [[55/32]]
| D
| Db
|-
|-
| 9
| 9
| 1053
| 1053
| [[11/6]]
| [[11/6]]
| E
| D
|-
|-
| 10
| 10
| 1170
| 1170
| [[49/25]], [[160/81]], [[2/1]]
| [[49/25]], [[160/81]], [[2/1]]
| E#, Fb
| E
|-
|-
| 11
| 11
Line 79: Line 79:
| 1521 ~ 321
| 1521 ~ 321
|
|
| C#, Db
| C#
|-
|-
| 14
| 14
| 1638 ~ 438
| 1638 ~ 438
|
|
| D
| Db
|-
|-
| 15
| 15
| 1755 ~ 555
| 1755 ~ 555
|
|
| E
| D
|-
|-
| 16
| 16
| 1872 ~ 672
| 1872 ~ 672
|
|
| E#, Fb
| E
|-
|-
| 17
| 17
Line 109: Line 109:
| 2223 ~ 1023
| 2223 ~ 1023
|
|
| C#, Db
| C#
|-
|-
| 20
| 20
| 2340 ~ 1140
| 2340 ~ 1140
|
|
| D
| Db
|-
|-
| 21
| 21
| 2457 ~ 57
| 2457 ~ 57
|
|
| E
| D
|-
|-
| 22
| 22
| 2574 ~ 174
| 2574 ~ 174
|
|
| E#, Fb
| E
|-
|-
| 23
| 23

Revision as of 03:36, 4 March 2023

← 5edf 6edf 7edf →
Prime factorization 2 × 3
Step size 116.993 ¢ 
Octave 10\6edf (1169.93 ¢) (→ 5\3edf)
Twelfth 16\6edf (1871.88 ¢) (→ 8\3edf)
Consistency limit 3
Distinct consistency limit 3
Special properties

6EDF is the equal division of the just perfect fifth into six parts of 116.9925 cents each, corresponding to 10.2571 edo. It is related to the miracle temperament, which tempers out 225/224 and 1029/1024 in the 7-limit.

Intervals

degrees cents ~ cents octave-reduced approximate ratios Neptunian notation
0 0 (perfect unison, 1:1) 1/1 C
1 117 16/15, 15/14 C#
2 234 8/7 Db
3 351 11/9, 27/22 D
4 468 21/16 E
5 585 7/5, 45/32 F
6 702 (just perfect fifth, 3:2) 3/2 C
7 819 8/5, 21/13 C#
8 936 12/7, 55/32 Db
9 1053 11/6 D
10 1170 49/25, 160/81, 2/1 E
11 1287 ~ 87 F
12 1404 ~ 204 (just major whole tone/ninth, 9:4) C
13 1521 ~ 321 C#
14 1638 ~ 438 Db
15 1755 ~ 555 D
16 1872 ~ 672 E
17 1988 ~ 788 F
18 2106 ~ 906 (Pythagorean major sixth, 27:8) C
19 2223 ~ 1023 C#
20 2340 ~ 1140 Db
21 2457 ~ 57 D
22 2574 ~ 174 E
23 2691 ~ 291 F
24 2808 ~ 408 (Pythagorean major third, 81:16) C

Compositions