193edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Improve intro and theory
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''193 equal divisions of the octave''' ('''193edo'''), or the '''193(-tone) equal temperament''' ('''193tet''', '''193et''') when viewed from a [[regular temperament]] perspective, is the [[EDO|equal division of the octave]] into 193 parts of about 6.22 [[cent]]s each.
{{EDO intro|193}}


== Theory ==
== Theory ==
193edo provides the [[optimal patent val]] for the [[sqrtphi]] temperament in the 13-, 17- and 19-limits, and for the 13-limit [[Swetismic temperaments #Minos|minos]] and [[Mirkwai family #Indra|vish]] temperaments. It is the 44th [[prime edo]].
193edo provides the [[optimal patent val]] for the [[sqrtphi]] temperament in the 13-, 17- and 19-limit, and for the 13-limit [[Swetismic temperaments #Minos|minos]] and [[Mirkwai family #Indra|vish]] temperaments.  


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|193}}
{{Harmonics in equal|193|columns=11}}
 
=== Miscellaneous properties ===
193edo is the 44th [[prime edo]].


== Regular temperament properties ==
== Regular temperament properties ==
Line 82: Line 85:
| 99.48
| 99.48
| 18/17
| 18/17
| [[Quindromeda family#Quintakwai|Quintakwai]]/[[Quindromeda family#Quintakwoid|Quintakwoid]]
| [[Quindromeda family#Quintakwai|Quintakwai]] / [[Quindromeda family#Quintakwoid|quintakwoid]]
|-
|-
| 1
| 1
Line 133: Line 136:
|}
|}


==Scales==
== Scales ==
*Approximation of sqrt (π): '''159\193''' (988.60104 cents), and of φ: '''134\193''' (833.16062 cents), both inside in the [[7L 2s|superdiatonic]] scale: 25 25 25 9 25 25 25 25 9
*Approximation of sqrt (π): '''159\193''' (988.60104 cents), and of φ: '''134\193''' (833.16062 cents), both inside in the [[7L 2s|superdiatonic]] scale: 25 25 25 9 25 25 25 25 9



Revision as of 08:17, 22 October 2022

← 192edo 193edo 194edo →
Prime factorization 193 (prime)
Step size 6.21762 ¢ 
Fifth 113\193 (702.591 ¢)
Semitones (A1:m2) 19:14 (118.1 ¢ : 87.05 ¢)
Consistency limit 11
Distinct consistency limit 11

Template:EDO intro

Theory

193edo provides the optimal patent val for the sqrtphi temperament in the 13-, 17- and 19-limit, and for the 13-limit minos and vish temperaments.

Prime harmonics

Approximation of prime harmonics in 193edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.64 -0.82 +1.12 +2.05 -1.15 +0.74 +0.93 -0.30 +2.55 -0.99
Relative (%) +0.0 +10.2 -13.2 +18.1 +33.0 -18.5 +12.0 +15.0 -4.7 +41.0 -16.0
Steps
(reduced)
193
(0)
306
(113)
448
(62)
542
(156)
668
(89)
714
(135)
789
(17)
820
(48)
873
(101)
938
(166)
956
(184)

Miscellaneous properties

193edo is the 44th prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal 8ve
Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [306 -193 [193 306]] -0.2005 0.2005 3.23
2.3.5 15625/15552, [50 -33 1 [193 306 448]] -0.0158 0.3084 4.96
2.3.5.7 5120/5103, 15625/15552, 16875/16807 [193 306 448 542]] -0.1118 0.3146 5.06
2.3.5.7.11 540/539, 1375/1372, 4375/4356, 5120/5103 [193 306 448 542 668]] -0.2080 0.3408 5.48
2.3.5.7.11.13 325/324, 364/363, 540/539, 625/624, 4096/4095 [193 306 448 542 668 714]] -0.1216 0.3662 5.89
2.3.5.7.11.13.17 325/324, 364/363, 375/374, 442/441, 595/594, 4096/4095 [193 306 448 542 668 714 789]] -0.1302 0.3397 5.46
2.3.5.7.11.13.17.19 325/324, 364/363, 375/374, 400/399, 442/441, 595/594, 1216/1215 [193 306 448 542 668 714 789 820]] -0.1414 0.3191 5.13

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperament
1 16\193 99.48 18/17 Quintakwai / quintakwoid
1 18\193 111.92 16/15 Vavoom
1 39\193 242.49 147/128 Septiquarter
1 51\193 317.10 6/5 Countercata (7-limit)
1 56\193 348.19 11/9 Eris
1 61\193 379.28 56/45 Marthirds
1 67\193 416.58 14/11 Sqrtphi
1 79\193 491.19 3645/2744 Fifthplus
1 80\193 497.41 4/3 Kwai

Scales

  • Approximation of sqrt (π): 159\193 (988.60104 cents), and of φ: 134\193 (833.16062 cents), both inside in the superdiatonic scale: 25 25 25 9 25 25 25 25 9