1236edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
m Infobox ET added
m sectioning and one more column for the prime error table
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''1236 divisions of the octave''' divides the [[octave]] into 1236 [[equal]] parts of 0.9709 [[cent]]s each. It is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. It is a strong 17-limit system and uniquely [[consistent]] through the 17-odd-limit, with a 17-limit [[comma basis]] of {[[2601/2600]], [[4096/4095]], [[5832/5831]], [[6656/6655]], [[9801/9800]], 105644/105625}.  
The '''1236 divisions of the octave''' divides the [[octave]] into 1236 [[equal]] parts of 0.9709 [[cent]]s each. It is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]], though not zeta integral nor zeta gap. It is a strong 17-limit system and uniquely [[consistent]] through the 17-odd-limit, with a 17-limit [[comma basis]] of {[[2601/2600]], [[4096/4095]], [[5832/5831]], [[6656/6655]], [[9801/9800]], 105644/105625}.  


1236 = 2<sup>2</sup> × 3 × 103, with subset edos 2, 3, 6, 12, 103, 206, 309, and 618. It is divisible by 12, and is an [[atomic]] system.  
1236 = 2<sup>2</sup> × 3 × 103, with subset edos 2, 3, 6, 12, 103, 206, 309, and 618. It is divisible by 12, and is an [[atomic]] system.  


{{Harmonics in equal|1236}}
=== Prime harmonics ===
{{Harmonics in equal|1236|columns=11}}


[[Category:Equal divisions of the octave|####]] <!-- 4-digit number -->
[[Category:Equal divisions of the octave|####]] <!-- 4-digit number -->

Revision as of 09:19, 29 October 2022

← 1235edo 1236edo 1237edo →
Prime factorization 22 × 3 × 103
Step size 0.970874 ¢ 
Fifth 723\1236 (701.942 ¢) (→ 241\412)
Semitones (A1:m2) 117:93 (113.6 ¢ : 90.29 ¢)
Consistency limit 17
Distinct consistency limit 17

The 1236 divisions of the octave divides the octave into 1236 equal parts of 0.9709 cents each. It is a zeta peak edo, though not zeta integral nor zeta gap. It is a strong 17-limit system and uniquely consistent through the 17-odd-limit, with a 17-limit comma basis of {2601/2600, 4096/4095, 5832/5831, 6656/6655, 9801/9800, 105644/105625}.

1236 = 22 × 3 × 103, with subset edos 2, 3, 6, 12, 103, 206, 309, and 618. It is divisible by 12, and is an atomic system.

Prime harmonics

Approximation of prime harmonics in 1236edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.013 +0.094 +0.106 +0.138 +0.249 -0.101 -0.426 -0.119 -0.451 -0.375
Relative (%) +0.0 -1.4 +9.7 +10.9 +14.3 +25.7 -10.4 -43.8 -12.3 -46.5 -38.7
Steps
(reduced)
1236
(0)
1959
(723)
2870
(398)
3470
(998)
4276
(568)
4574
(866)
5052
(108)
5250
(306)
5591
(647)
6004
(1060)
6123
(1179)