164edo: Difference between revisions
Jump to navigation
Jump to search
m Categories |
Cleanup; +prime error table; +RTT table and rank-2 temperaments |
||
Line 1: | Line 1: | ||
The ''164 equal division'' divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the [[ | The ''164 equal division'' divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the [[würschmidt comma]], 393216/390625, and supplies the [[optimal patent val]] for the [[würschmidt]] temperament. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit the [[Gamelismic family #Portent|momentous]] temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440. | ||
164 = 4 | 164 = 4 × 41, with divisors 2, 4, 41, 82 | ||
=== Prime harmonics === | |||
{{Harmonics in equal|164}} | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | Subgroup | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| 393216/390625, {{monzo| 24 -21 4 }} | |||
| [{{val| 164 260 381 }}] | |||
| -0.316 | |||
| 0.262 | |||
| 3.58 | |||
|- | |||
| 2.3.5.13 | |||
| 676/675, 256000/255879, 393216/390625 | |||
| [{{val| 164 260 381 607 }}] | |||
| -0.300 | |||
| 0.229 | |||
| 3.13 | |||
|} | |||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per Otave | |||
! Generator<br>(Reduced) | |||
! Cents<br>(Reduced) | |||
! Associated<br>Ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 47\164 | |||
| 343.90 | |||
| 8000/6561 | |||
| [[Geb]] | |||
|- | |||
| 1 | |||
| 49\164 | |||
| 358.54 | |||
| 16/13 | |||
| [[Restles]] (164) | |||
|- | |||
| 1 | |||
| 53\164 | |||
| 387.80 | |||
| 5/4 | |||
| [[Würschmidt]] | |||
|- | |||
| 1 | |||
| 53\164 | |||
| 475.61 | |||
| 320/243 | |||
| [[Vulture]] | |||
|- | |||
| 1 | |||
| 69\164 | |||
| 504.88 | |||
| 104976/78125 | |||
| [[Countermeantone]] | |||
|- | |||
| 2 | |||
| 17\164 | |||
| 124.39 | |||
| 275/256 | |||
| [[Semivulture]] (164) | |||
|- | |||
| 4 | |||
| 68\164<br>(14\164) | |||
| 497.56<br>(102.44) | |||
| 4/3<br>(35/33) | |||
| [[Undim]] (164deff) / [[unlit]] (164f) | |||
|- | |||
| 41 | |||
| 53\164<br>(1\164) | |||
| 387.80<br>(7.32) | |||
| 5/4<br>(32805/32768) | |||
| [[Counterpyth]] | |||
|} | |||
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> | [[Category:Equal divisions of the octave|###]] <!-- 3-digit number --> | ||
[[Category:Würschmidt]] |
Revision as of 12:29, 26 August 2022
The 164 equal division divides the octave into 164 equal parts of 7.317 cents each. In the 5-limit it tempers out the würschmidt comma, 393216/390625, and supplies the optimal patent val for the würschmidt temperament. In higher limits, also supplies the optimal patent val for the 7-limit, 1/41 octave period 41&123 temperament, and the 13-limit the momentous temperament, the rank-3 temperament tempering out 196/195, 352/351, 385/384 and 441/440.
164 = 4 × 41, with divisors 2, 4, 41, 82
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.48 | +1.49 | -2.97 | -2.54 | +0.94 | -2.52 | +2.49 | +0.99 | +2.13 | -3.57 |
Relative (%) | +0.0 | +6.6 | +20.4 | -40.6 | -34.7 | +12.8 | -34.4 | +34.0 | +13.6 | +29.1 | -48.8 | |
Steps (reduced) |
164 (0) |
260 (96) |
381 (53) |
460 (132) |
567 (75) |
607 (115) |
670 (14) |
697 (41) |
742 (86) |
797 (141) |
812 (156) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | 393216/390625, [24 -21 4⟩ | [⟨164 260 381]] | -0.316 | 0.262 | 3.58 |
2.3.5.13 | 676/675, 256000/255879, 393216/390625 | [⟨164 260 381 607]] | -0.300 | 0.229 | 3.13 |
Rank-2 temperaments
Periods per Otave |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 47\164 | 343.90 | 8000/6561 | Geb |
1 | 49\164 | 358.54 | 16/13 | Restles (164) |
1 | 53\164 | 387.80 | 5/4 | Würschmidt |
1 | 53\164 | 475.61 | 320/243 | Vulture |
1 | 69\164 | 504.88 | 104976/78125 | Countermeantone |
2 | 17\164 | 124.39 | 275/256 | Semivulture (164) |
4 | 68\164 (14\164) |
497.56 (102.44) |
4/3 (35/33) |
Undim (164deff) / unlit (164f) |
41 | 53\164 (1\164) |
387.80 (7.32) |
5/4 (32805/32768) |
Counterpyth |