1619edo: Difference between revisions
No edit summary |
Cleanup, precision, corrections, +links, categories |
||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET | ||
| Prime factorization = 1619 ( | | Prime factorization = 1619 (prime) | ||
| Step size = 0. | | Step size = 0.741198¢ | ||
| Fifth = 947\1619(701. | | Fifth = 947\1619 (701.915¢) | ||
| Major 2nd = 275\1619 (203. | | Major 2nd = 275\1619 (203.830¢) | ||
| Semitones = | | Semitones = 153:122 (113.403¢ : 90.426¢) | ||
}} | }} | ||
1619edo divides the octave into parts of 741 | '''1619edo''' divides the octave into parts of about 0.741 cents each. | ||
== Theory == | == Theory == | ||
1619edo is excellent in the 13-limit. It supports an extension of the [[Ragismic family|ragismic]] temperament with 2 extra dimensions in several ways. First, it supports the 441 & 270 & 1619 rank-3 temperament tempering out [[4225/4224]], [[4375/4374]], [[123201/123200]], 655473/655360, 1664000/1663893, and 6470695/6469632. Second, it supports 72 & 494 & 270 & 1619 temperament tempering out [[6656/6655]], 2912000/2910897, and 29115625/29113344. | |||
1619edo is excellent in the 13-limit. It supports an extension of the [[Ragismic family|ragismic]] temperament with 2 extra dimensions in several ways. First, it supports the 441 & 270 & 1619 rank 3 temperament tempering out 4225/4224, 4375/4374, 123201/123200, 655473/655360, 1664000/1663893, and 6470695/6469632. Second, it supports 72 & 494 & 270 & 1619 temperament tempering out 6656/6655, 2912000/2910897, and 29115625/29113344. | |||
In general, 1619edo supports vidar, with the comma set 4225/4224, 4375/4374, and 6656/6655. | In general, 1619edo supports vidar, with the comma set 4225/4224, 4375/4374, and 6656/6655. | ||
1619edo has 7/6 on 360th step, a highly divisible number, 27/25 on 180th, and 33/32 on 72nd as a consequence of tempering out the commas. This means that 72ed33/32 is equivalent to 1619edo. When it comes to using 33/32 as the generator, 1619edo supports the temperament that tempers out 196625/196608, 200000/199927, 2912000/2910897, 3764768/3764475. | 1619edo has 7/6 on 360th step, a highly divisible number, 27/25 on 180th, and 33/32 on 72nd as a consequence of tempering out the commas. This means that 72ed33/32 is equivalent to 1619edo. When it comes to using 33/32 as the generator, 1619edo supports the temperament that tempers out 196625/196608, 200000/199927, 2912000/2910897, 3764768/3764475. | ||
1619edo is the 256th [[Prime edo]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|1619|columns=10}} | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |Subgroup | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
8ve stretch (¢) | ! colspan="2" | Tuning error | ||
! colspan="2" |Tuning error | |||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | |2.3 | ||
|{{monzo|-2566 1619}} | | {{monzo| -2566 1619 }} | ||
|[{{val|1619 2566}}] | | [{{val| 1619 2566 }}] | ||
|0.013 | | 0.013 | ||
|0.013 | | 0.013 | ||
|1.7 | | 1.7 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|{{monzo|-69 | | {{monzo| -69 45 -1 }}, {{monzo| -82 -1 36 }} | ||
|[{{val|1619 2566 3759}}] | | [{{val| 1619 2566 3759 }}] | ||
|0.030 | | 0.030 | ||
|0.026 | | 0.026 | ||
|3.5 | | 3.5 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|4375/4374, {{monzo|-6 3 9 -7}}, {{monzo|-67 14 6 11}} | | 4375/4374, {{monzo| -6 3 9 -7 }}, {{monzo| -67 14 6 11 }} | ||
|[{{val|1619 2566 3759 4545}}] | | [{{val| 1619 2566 3759 4545 }}] | ||
|0.030 | | 0.030 | ||
|0.023 | | 0.023 | ||
|3.1 | | 3.1 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|117649/117612, 151263/151250, 759375/758912, [[117440512/117406179]] | | 117649/117612, 151263/151250, 759375/758912, [[117440512/117406179]] | ||
|[{{val|1619 2566 3759 4545 5601}}] | | [{{val| 1619 2566 3759 4545 5601 }}] | ||
|0.016 | | 0.016 | ||
|0.034 | | 0.034 | ||
|4.0 | | 4.0 | ||
|- | |- | ||
|2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
|4225/4224, 43940/43923, 151263/151250, 91125/91091, 123201/123200 | | 4225/4224, 43940/43923, 151263/151250, 91125/91091, 123201/123200 | ||
|[{{val|1619 2566 3759 4545 5601 5991}}] | | [{{val| 1619 2566 3759 4545 5601 5991 }}] | ||
|0.013 | | 0.013 | ||
|0.032 | | 0.032 | ||
|4.2 | | 4.2 | ||
|- | |- | ||
|} | |} | ||
[[Category: | |||
[[Category:Equal divisions of the octave]] |
Revision as of 18:13, 12 April 2022
← 1618edo | 1619edo | 1620edo → |
1619edo divides the octave into parts of about 0.741 cents each.
Theory
1619edo is excellent in the 13-limit. It supports an extension of the ragismic temperament with 2 extra dimensions in several ways. First, it supports the 441 & 270 & 1619 rank-3 temperament tempering out 4225/4224, 4375/4374, 123201/123200, 655473/655360, 1664000/1663893, and 6470695/6469632. Second, it supports 72 & 494 & 270 & 1619 temperament tempering out 6656/6655, 2912000/2910897, and 29115625/29113344.
In general, 1619edo supports vidar, with the comma set 4225/4224, 4375/4374, and 6656/6655.
1619edo has 7/6 on 360th step, a highly divisible number, 27/25 on 180th, and 33/32 on 72nd as a consequence of tempering out the commas. This means that 72ed33/32 is equivalent to 1619edo. When it comes to using 33/32 as the generator, 1619edo supports the temperament that tempers out 196625/196608, 200000/199927, 2912000/2910897, 3764768/3764475.
1619edo is the 256th Prime edo.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.040 | -0.149 | -0.080 | +0.134 | -0.009 | +0.295 | -0.293 | +0.262 | -0.053 |
Relative (%) | +0.0 | -5.4 | -20.2 | -10.8 | +18.0 | -1.2 | +39.8 | -39.5 | +35.3 | -7.1 | |
Steps (reduced) |
1619 (0) |
2566 (947) |
3759 (521) |
4545 (1307) |
5601 (744) |
5991 (1134) |
6618 (142) |
6877 (401) |
7324 (848) |
7865 (1389) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-2566 1619⟩ | [⟨1619 2566]] | 0.013 | 0.013 | 1.7 |
2.3.5 | [-69 45 -1⟩, [-82 -1 36⟩ | [⟨1619 2566 3759]] | 0.030 | 0.026 | 3.5 |
2.3.5.7 | 4375/4374, [-6 3 9 -7⟩, [-67 14 6 11⟩ | [⟨1619 2566 3759 4545]] | 0.030 | 0.023 | 3.1 |
2.3.5.7.11 | 117649/117612, 151263/151250, 759375/758912, 117440512/117406179 | [⟨1619 2566 3759 4545 5601]] | 0.016 | 0.034 | 4.0 |
2.3.5.7.11.13 | 4225/4224, 43940/43923, 151263/151250, 91125/91091, 123201/123200 | [⟨1619 2566 3759 4545 5601 5991]] | 0.013 | 0.032 | 4.2 |