16ed5/2: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Xenllium (talk | contribs)
mNo edit summary
Line 4: Line 4:
{| class="wikitable"
{| class="wikitable"
|+
|+
!Degrees
! Degrees
! colspan="3" |Enneatonic
! colspan="3" | Enneatonic
!ED38\29
! ED38\29
!Golden
! Golden
!ED5/2
! ED5/2
!ED(7φ+6)\5(φ+1)
! ED(7φ+6)\5(φ+1)
!ED4\3=''r¢''
! ED4\3=''r¢''
|-
|-
|1
| 1
|1#/2b
| 1#/2b
| colspan="2" |F#/Gb
| colspan="2" | F#/Gb
|98.276
| 98.276
|98.3795
| 98.3795
|99.145
| 99.145
|99.2705
| 99.2705
|''100''
| ''100''
|-
|-
|2
| 2
|2
| 2
| colspan="2" |G
| colspan="2" | G
|196.552
| 196.552
|196.759
| 196.759
|198.289
| 198.289
|198.541
| 198.541
|''200''
| ''200''
|-
|-
|3
| 3
|2#/3b
| 2#/3b
|G#/Jb
| G#/Jb
|''G#/Ab''
| ''G#/Ab''
|294.828
| 294.828
|295.138
| 295.138
|297.433
| 297.433
|297.8115
| 297.8115
|''300''
| ''300''
|-
|-
|4
| 4
|3
| 3
|J
| J
|''A''
| ''A''
|393.103
| 393.103
|393.518
| 393.518
|396.578
| 396.578
|397.082
| 397.082
|''400''
| ''400''
|-
|-
|5
| 5
|3#/4b
| 3#/4b
|J#/Ab
| J#/Ab
|''A#/Bb''
| ''A#/Bb''
|491.379
| 491.379
|491.897
| 491.897
|495.723
| 495.723
|496.3525
| 496.3525
|''500''
| ''500''
|-
|-
|6
| 6
|4
| 4
|A
| A
|''B''
| ''B''
|589.655
| 589.655
|590.277
| 590.277
|594.868
| 594.868
|595.623
| 595.623
|''600''
| ''600''
|-
|-
|7
| 7
|5
| 5
|B
| B
|''H''
| ''H''
|687.931
| 687.931
|688.656
| 688.656
|694.012
| 694.012
|694.894
| 694.894
|''700''
| ''700''
|-
|-
|8
| 8
|5#/6b
| 5#/6b
|B#/Hb
| B#/Hb
|''H#/Cb''
| ''H#/Cb''
|786.207
| 786.207
|787.036
| 787.036
|793.157
| 793.157
|794.164
| 794.164
|''800''
| ''800''
|-
|-
|9
| 9
|6
| 6
|H
| H
|''C''
| ''C''
|884.483
| 884.483
|885.415
| 885.415
|892.3015
| 892.3015
|893.435
| 893.435
|''900''
| ''900''
|-
|-
|10
| 10
|6#/7b
| 6#/7b
|H#/Cb
| H#/Cb
|''C#/Db''
| ''C#/Db''
|982.759
| 982.759
|983.795
| 983.795
|991.446
| 991.446
|992.705
| 992.705
|''1000''
| ''1000''
|-
|-
|11
| 11
|7
| 7
|C
| C
|''D''
| ''D''
|1081.0345
| 1081.0345
|1082.174
| 1082.174
|1090.591
| 1090.591
|1091.976
| 1091.976
|''1100''
| ''1100''
|-
|-
|12
| 12
|7#/8b
| 7#/8b
|C#/Db
| C#/Db
|''D#/Sb''
| ''D#/Sb''
|1179.31
| 1179.31
|1180.554
| 1180.554
|1189.735
| 1189.735
|1191.246
| 1191.246
|''1200''
| ''1200''
|-
|-
|13
| 13
|8
| 8
|D
| D
|''S''
| ''S''
|1277.586
| 1277.586
|1278.933
| 1278.933
|1288.88
| 1288.88
|1290.517
| 1290.517
|''1300''
| ''1300''
|-
|-
|14
| 14
|8#/9b
| 8#/9b
|D#/Eb
| D#/Eb
|''S#/Eb''
| ''S#/Eb''
|1375.862
| 1375.862
|1377.313
| 1377.313
|1388.0245
| 1388.0245
|1389.787
| 1389.787
|''1400''
| ''1400''
|-
|-
|15
| 15
|9
| 9
| colspan="2" |E
| colspan="2" | E
|1474.138
| 1474.138
|1475.692
| 1475.692
|1487.169
| 1487.169
|1489.058
| 1489.058
|''1500''
| ''1500''
|-
|-
|16
| 16
|1
| 1
| colspan="2" |F
| colspan="2" | F
|1572.414
| 1572.414
|1574.0715
| 1574.0715
|1586.314
| 1586.314
|1588.328
| 1588.328
|''1600''
| ''1600''
|}
|}
Coincidentally, 133 steps of the pyrite EDX of this size exceed 11 octaves by only 2.978¢.
Coincidentally, 133 steps of the pyrite EDX of this size exceed 11 octaves by only 2.978¢.

Revision as of 12:38, 13 September 2021

16ED5/2 is the equal division of the 5/2 interval into 16 parts of 99.1446 cents each. This is the scale which occurs as the dominant reformed Mixolydian mode tuned as an equal division of a just interval.

Intervals

Degrees Enneatonic ED38\29 Golden ED5/2 ED(7φ+6)\5(φ+1) ED4\3=
1 1#/2b F#/Gb 98.276 98.3795 99.145 99.2705 100
2 2 G 196.552 196.759 198.289 198.541 200
3 2#/3b G#/Jb G#/Ab 294.828 295.138 297.433 297.8115 300
4 3 J A 393.103 393.518 396.578 397.082 400
5 3#/4b J#/Ab A#/Bb 491.379 491.897 495.723 496.3525 500
6 4 A B 589.655 590.277 594.868 595.623 600
7 5 B H 687.931 688.656 694.012 694.894 700
8 5#/6b B#/Hb H#/Cb 786.207 787.036 793.157 794.164 800
9 6 H C 884.483 885.415 892.3015 893.435 900
10 6#/7b H#/Cb C#/Db 982.759 983.795 991.446 992.705 1000
11 7 C D 1081.0345 1082.174 1090.591 1091.976 1100
12 7#/8b C#/Db D#/Sb 1179.31 1180.554 1189.735 1191.246 1200
13 8 D S 1277.586 1278.933 1288.88 1290.517 1300
14 8#/9b D#/Eb S#/Eb 1375.862 1377.313 1388.0245 1389.787 1400
15 9 E 1474.138 1475.692 1487.169 1489.058 1500
16 1 F 1572.414 1574.0715 1586.314 1588.328 1600

Coincidentally, 133 steps of the pyrite EDX of this size exceed 11 octaves by only 2.978¢.

16ed5/2 as a generator

16ED5/2 can also be thought of as a generator of the 2.3.5.17.19 subgroup temperament which tempers out 256/255, 361/360, and 4624/4617, which is a cluster temperament with 12 clusters of notes in an octave (quintaleap temperament). This temperament is supported by Template:Val list, and 157 EDOs.

Tempering out 400/399 (equating 20/19 and 21/20) leads quintupole (12&121), and tempering out 476/475 (equating 19/17 with 28/25) leads quinticosiennic (12&145).

Another temperament related to 16ED5/2 is quintapole (12&85). It is practically identical to the Galilei tuning, which is generated by the ratios 2/1 and 18/17.


Quintaleap (12&121)

5-limit
Comma: [37 -16 -5 = 137438953472/134521003125
Mapping: [1 2 1], 0 -5 16]]
POTE generator: ~135/128 = 99.267
Vals: 12, 85, 97, 109, 121, 133, 278c, 411bc, 544bc
Badness: 0.444506

2.3.5.17.19 subgroup
Comma list: 256/255, 361/360, 4624/4617
Gencom: [2 18/17; 256/255 361/360 4624/4617]
Gencom mapping: [1 2 1 5 4], 0 -5 16 -11 3]]
POTE generator: ~18/17 = 99.276
Vals: 12, 109, 121, 133
RMS error: 0.3427 cents

Quintupole (12&121)

7-limit
Comma list: 4000/3969, 458752/455625
Mapping: [1 2 1 0], 0 -5 16 34]]
POTE generator: ~135/128 = 99.175
Vals: 12, 97, 109, 121
Badness: 0.111620

11-limit
Comma list: 896/891, 1375/1372, 4375/4356
Mapping: [1 2 1 0 -1], 0 -5 16 34 54]]
POTE generator: ~132/125 = 99.156
Vals: 12, 109, 121, 351bde, 472bdee
Badness: 0.056501

13-limit
Comma list: 352/351, 364/363, 625/624, 2704/2695
Mapping: [1 2 1 0 -1 -2], 0 -5 16 34 54 69]]
POTE generator: ~55/52 = 99.165
Vals: 12f, 109, 121
Badness: 0.038431

17-limit
Comma list: 256/255, 352/351, 364/363, 375/374, 442/441
Mapping: [1 2 1 0 -1 -2 5], 0 -5 16 34 54 69 -11]]
POTE generator: ~18/17 = 99.172
Vals: 12f, 109, 121
Badness: 0.028721

19-limit
Comma list: 190/189, 256/255, 352/351, 361/360, 364/363, 375/374
Mapping: [1 2 1 0 -1 -2 5 4], 0 -5 16 34 54 69 -11 3]]
POTE generator: ~18/17 = 99.164
Vals: 12f, 109, 121
Badness: 0.023818

Quinticosiennic (12&145)

7-limit
Comma list: 5120/5103, 395136/390625
Mapping: [1 2 1 -1], 0 -5 16 46]]
POTE generator: ~135/128 = 99.345
Vals: 12, 133, 145, 157, 302c, 459bcc
Badness: 0.158041

11-limit
Comma list: 441/440, 896/891, 78408/78125
Mapping: [1 2 1 -1 -2], 0 -5 16 46 66]]
POTE generator: ~35/33 = 99.318
Vals: 12, 133, 145
Badness: 0.080674

13-limit
Comma list: 196/195, 352/351, 364/363, 78408/78125
Mapping: [1 2 1 -1 -2 -3], 0 -5 16 46 66 81]]
POTE generator: ~35/33 = 99.307
Vals: 12f, 133, 145
Badness: 0.052464

17-limit
Comma list: 196/195, 256/255, 352/351, 364/363, 3757/3750
Mapping: [1 2 1 -1 -2 -3 5], 0 -5 16 46 66 81 -11]]
POTE generator: ~18/17 = 99.308
Vals: 12f, 133, 145
Badness: 0.037108

19-limit
Comma list: 196/195, 256/255, 352/351, 361/360, 364/363, 476/475
Mapping: [1 2 1 -1 -2 -3 5 4], 0 -5 16 46 66 81 -11 3]]
POTE generator: ~18/17 = 99.303
Vals: 12f, 133, 145
Badness: 0.028440

Quintapole (12&85)

7-limit
Comma list: 225/224, 7812500/7411887
Mapping: [1 2 1 1], 0 -5 16 22]]
POTE generator: ~21/20 = 98.994
Vals: 12, 73c, 85, 97d
Badness: 0.192498

11-limit
Comma list: 100/99, 225/224, 85184/84035
Mapping: [1 2 1 1 0], 0 -5 16 22 42]]
POTE generator: ~21/20 = 98.954
Vals: 12, 73ce, 85, 97d
Badness: 0.104353

See also