Mercator family: Difference between revisions
No edit summary |
No edit summary |
||
Line 60: | Line 60: | ||
Mapping: | Mapping: | ||
Wedgie: | |||
EDOs: | |||
Badness: | |||
==Pentacontatritonic== | |||
Commas: | |||
POTE generator: | |||
Mapping: | |||
Wedgie: | |||
EDOs: | |||
Badness: | |||
==7-limit== | |||
Commas: | |||
POTE generator: | |||
Mapping: | |||
Wedgie: | |||
EDOs: | |||
Badness: | |||
==11-limit== | |||
Commas: | |||
POTE generator: | |||
Mapping: | |||
Wedgie: | |||
EDOs: | |||
Badness: | |||
==13-limit== | |||
Commas: | |||
POTE generator: | |||
Mapping: | |||
Wedgie: | Wedgie: |
Revision as of 15:30, 10 March 2021
The Mercator family tempers out Mercator's comma, [-84 53⟩, and hence the fifths form a closed 53-note circle of fifths, identical to 53edo. While the tuning of the fifth will be that of 53edo, 0.069 cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.
POTE generator: ~5/4 = 386.264
Mapping: [⟨53 84 123], ⟨0 0 1]]
Wedgie: ⟨⟨0 53 84]]
Badness: 0.2843
Cartography temperament
In terms of the normal comma list, Cartography is characterized by the addition of the schisma, 32805/32768, to Mercator's comma, which completely reduces all commas in the Schismic-Mercator equivalence continuum to the unison, and thus, the 5-limit is exactly the same as the 5-limit of 53edo. Cartography can also be characterized as the 53&159 temperament, with 212edo being a possible tuning.
Commas:
POTE generator:
Mapping:
Wedgie:
EDOs:
Badness:
7-limit
Commas:
POTE generator:
Mapping:
Wedgie:
EDOs:
Badness:
11-limit
Commas:
POTE generator:
Mapping:
Wedgie:
EDOs:
Badness:
13-limit
Commas:
POTE generator:
Mapping:
Wedgie:
EDOs:
Badness:
Pentacontatritonic
Commas:
POTE generator:
Mapping:
Wedgie:
EDOs:
Badness:
7-limit
Commas:
POTE generator:
Mapping:
Wedgie:
EDOs:
Badness:
11-limit
Commas:
POTE generator:
Mapping:
Wedgie:
EDOs:
Badness:
13-limit
Commas:
POTE generator:
Mapping:
Wedgie:
EDOs:
Badness: