38edo: Difference between revisions
Jump to navigation
Jump to search
+ prime intervals |
m Added notation |
||
Line 1: | Line 1: | ||
{{Infobox ET | |||
| Prime factorization = 2 x 19 | |||
| Step size = 31.579¢ | |||
| Fifth = 22\19 = 694.737¢ | |||
| Major 2nd = 6\38 = 189¢ | |||
| Minor 2nd = 4\38 = 126¢ | |||
| Augmented 1sn = 2\38 = 63¢ | |||
}} | |||
'''38edo''' divides the octave into 38 equal parts of 31.578947 [[cent]]s. Since 38 = 2*19, it can be thought of as two parallel [[19edo]]s. It [[tempers out]] the same [[5-limit]] commas as 19edo, namely [[81/80]], [[3125/3072]] and [[15625/15552]]. In the [[7-limit]], we can add [[50/49]], and tempering out 81/80 and 50/49 gives [[injera]] temperament, for which 38 is the [[optimal patent val]]. In the [[11-limit]], we can add 121/120 and 176/175. | '''38edo''' divides the octave into 38 equal parts of 31.578947 [[cent]]s. Since 38 = 2*19, it can be thought of as two parallel [[19edo]]s. It [[tempers out]] the same [[5-limit]] commas as 19edo, namely [[81/80]], [[3125/3072]] and [[15625/15552]]. In the [[7-limit]], we can add [[50/49]], and tempering out 81/80 and 50/49 gives [[injera]] temperament, for which 38 is the [[optimal patent val]]. In the [[11-limit]], we can add 121/120 and 176/175. | ||
{{Primes in edo|38}} | {{Primes in edo|38}} | ||
Line 8: | Line 17: | ||
! Step | ! Step | ||
! Cents | ! Cents | ||
! colspan="3" | [[Ups and Downs Notation]]* | |||
|- | |- | ||
| 0 | | 0 | ||
| 0.0000 | | 0.0000 | ||
| Perfect 1sn | |||
| P1 | |||
| D | |||
|- | |- | ||
| 1 | | 1 | ||
| 31.5789 | | 31.5789 | ||
| Up 1sn | |||
| ^1 | |||
| ^D | |||
|- | |- | ||
| 2 | | 2 | ||
| 63.1579 | | 63.1579 | ||
| Aug 1sn, dim 2nd | |||
| A1, d2 | |||
| D#, Ebb | |||
|- | |- | ||
| 3 | | 3 | ||
| 94.7368 | | 94.7368 | ||
| Upaug 1sn, downminor 2nd | |||
| ^A1, vm2 | |||
| ^D#, vEb | |||
|- | |- | ||
| 4 | | 4 | ||
| 126.3157 | | 126.3157 | ||
| Minor 2nd | |||
| m2 | |||
| Eb | |||
|- | |- | ||
| 5 | | 5 | ||
| 157.8947 | | 157.8947 | ||
| Mid 2nd | |||
| ~2 | |||
| vE | |||
|- | |- | ||
| 6 | | 6 | ||
| 189.4737 | | 189.4737 | ||
| Major 2nd | |||
| M2 | |||
| E | |||
|- | |- | ||
| 7 | | 7 | ||
| 221.0526 | | 221.0526 | ||
| Upmajor 2nd | |||
| ^M2 | |||
| ^E | |||
|- | |- | ||
| 8 | | 8 | ||
| 252.6316 | | 252.6316 | ||
| Aug 2nd, Dim 3rd | |||
| A2, d3 | |||
| E#, Fb | |||
|- | |- | ||
| 9 | | 9 | ||
| 284.2105 | | 284.2105 | ||
| Downminor 3rd | |||
| vm3 | |||
| vF | |||
|- | |- | ||
| 10 | | 10 | ||
| 315.7895 | | 315.7895 | ||
| Minor 3rd | |||
| m3 | |||
| F | |||
|- | |- | ||
| 11 | | 11 | ||
| 347.3684 | | 347.3684 | ||
| Mid 3rd | |||
| ~3 | |||
| ^F | |||
|- | |- | ||
| 12 | | 12 | ||
| 378.9474 | | 378.9474 | ||
| Major 3rd | |||
| M3 | |||
| F# | |||
|- | |- | ||
| 13 | | 13 | ||
| 410.5263 | | 410.5263 | ||
| Upmajor 3rd, Downdim 4th | |||
| ^M3, vd4 | |||
| ^F#, vGb | |||
|- | |- | ||
| 14 | | 14 | ||
| 442.1053 | | 442.1053 | ||
| Aug 3rd, dim 4th | |||
| A3, d4 | |||
| Fx, Gb | |||
|- | |- | ||
| 15 | | 15 | ||
| 473.6843 | | 473.6843 | ||
| Down 4th | |||
| v4 | |||
| vG | |||
|- | |- | ||
| 16 | | 16 | ||
| 505.2632 | | 505.2632 | ||
| Perfect 4th | |||
| P4 | |||
| G | |||
|- | |- | ||
| 17 | | 17 | ||
| 536.8421 | | 536.8421 | ||
| Up 4th | |||
| ^4 | |||
| ^G | |||
|- | |- | ||
| 18 | | 18 | ||
| 568.4211 | | 568.4211 | ||
| Aug 4th | |||
| A4 | |||
| G# | |||
|- | |- | ||
| 19 | | 19 | ||
| 600.0000 | | 600.0000 | ||
| Upaug 4th, downdim 5th | |||
| ^A4, vd5 | |||
| ^G#, vAb | |||
|- | |- | ||
| 20 | | 20 | ||
| 631.5789 | | 631.5789 | ||
| Dim 5th | |||
| d5 | |||
| Ab | |||
|- | |- | ||
| 21 | | 21 | ||
| 663.1579 | | 663.1579 | ||
| Down 5th | |||
| v5 | |||
| vA | |||
|- | |- | ||
| 22 | | 22 | ||
| 694.7368 | | 694.7368 | ||
| Perfect 5th | |||
| P5 | |||
| A | |||
|- | |- | ||
| 23 | | 23 | ||
| 726.3157 | | 726.3157 | ||
| Up 5th | |||
| ^5 | |||
| ^A | |||
|- | |- | ||
| 24 | | 24 | ||
| 757.8947 | | 757.8947 | ||
| Aug 5th, dim 6th | |||
| A5, d6 | |||
| A#, Bbb | |||
|- | |- | ||
| 25 | | 25 | ||
| 789.4737 | | 789.4737 | ||
| Upaug 5th, downminor 6th | |||
| ^A5, vm6 | |||
| ^A#, vBb | |||
|- | |- | ||
| 26 | | 26 | ||
| 821.0526 | | 821.0526 | ||
| Minor 6th | |||
| m6 | |||
| Bb | |||
|- | |- | ||
| 27 | | 27 | ||
| 852.6316 | | 852.6316 | ||
| Mid 6th | |||
| ~6 | |||
| Bv | |||
|- | |- | ||
| 28 | | 28 | ||
| 884.2105 | | 884.2105 | ||
| Major 6th | |||
| M6 | |||
| B | |||
|- | |- | ||
| 29 | | 29 | ||
| 915.7895 | | 915.7895 | ||
| Upmajor 6th | |||
| ^M6 | |||
| ^B | |||
|- | |- | ||
| 30 | | 30 | ||
| 947.3684 | | 947.3684 | ||
| Aug 6th, dim 7th | |||
| A6, d7 | |||
| B#, Cb | |||
|- | |- | ||
| 31 | | 31 | ||
| 978.9474 | | 978.9474 | ||
| Downminor 7th | |||
| vm7 | |||
| Cv | |||
|- | |- | ||
| 32 | | 32 | ||
| 1010.5263 | | 1010.5263 | ||
| Minor 7th | |||
| m7 | |||
| C | |||
|- | |- | ||
| 33 | | 33 | ||
| 1042.1053 | | 1042.1053 | ||
| Mid 7th | |||
| ~7 | |||
| C^ | |||
|- | |- | ||
| 34 | | 34 | ||
| 1073.6843 | | 1073.6843 | ||
| Major 7th | |||
| M7 | |||
| C# | |||
|- | |- | ||
| 35 | | 35 | ||
| 1105.2632 | | 1105.2632 | ||
| Upmajor 7th, Downdim 8ve | |||
| ^M7, vd8 | |||
| ^C#, vDb | |||
|- | |- | ||
| 36 | | 36 | ||
| 1136.8421 | | 1136.8421 | ||
| Aug 7th, dim 8ve | |||
| A7, d8 | |||
| Cx, Db | |||
|- | |- | ||
| 37 | | 37 | ||
| 1168.4211 | | 1168.4211 | ||
| Down 8ve | |||
| v8 | |||
| vD | |||
|- | |- | ||
| 38 | | 38 | ||
| 1200.0000 | | 1200.0000 | ||
| Perfect 8ve | |||
| P8 | |||
| D | |||
|} | |} | ||
<nowiki>*</nowiki> Ups and downs may be substituted with semi-sharps and semi-flats, respectively | |||
[[Category:Theory]] | [[Category:Theory]] | ||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category:38edo| ]] <!-- main article --> | [[Category:38edo| ]] <!-- main article --> |
Revision as of 17:27, 26 February 2021
← 37edo | 38edo | 39edo → |
38edo divides the octave into 38 equal parts of 31.578947 cents. Since 38 = 2*19, it can be thought of as two parallel 19edos. It tempers out the same 5-limit commas as 19edo, namely 81/80, 3125/3072 and 15625/15552. In the 7-limit, we can add 50/49, and tempering out 81/80 and 50/49 gives injera temperament, for which 38 is the optimal patent val. In the 11-limit, we can add 121/120 and 176/175. Script error: No such module "primes_in_edo".
Intervals
Step | Cents | Ups and Downs Notation* | ||
---|---|---|---|---|
0 | 0.0000 | Perfect 1sn | P1 | D |
1 | 31.5789 | Up 1sn | ^1 | ^D |
2 | 63.1579 | Aug 1sn, dim 2nd | A1, d2 | D#, Ebb |
3 | 94.7368 | Upaug 1sn, downminor 2nd | ^A1, vm2 | ^D#, vEb |
4 | 126.3157 | Minor 2nd | m2 | Eb |
5 | 157.8947 | Mid 2nd | ~2 | vE |
6 | 189.4737 | Major 2nd | M2 | E |
7 | 221.0526 | Upmajor 2nd | ^M2 | ^E |
8 | 252.6316 | Aug 2nd, Dim 3rd | A2, d3 | E#, Fb |
9 | 284.2105 | Downminor 3rd | vm3 | vF |
10 | 315.7895 | Minor 3rd | m3 | F |
11 | 347.3684 | Mid 3rd | ~3 | ^F |
12 | 378.9474 | Major 3rd | M3 | F# |
13 | 410.5263 | Upmajor 3rd, Downdim 4th | ^M3, vd4 | ^F#, vGb |
14 | 442.1053 | Aug 3rd, dim 4th | A3, d4 | Fx, Gb |
15 | 473.6843 | Down 4th | v4 | vG |
16 | 505.2632 | Perfect 4th | P4 | G |
17 | 536.8421 | Up 4th | ^4 | ^G |
18 | 568.4211 | Aug 4th | A4 | G# |
19 | 600.0000 | Upaug 4th, downdim 5th | ^A4, vd5 | ^G#, vAb |
20 | 631.5789 | Dim 5th | d5 | Ab |
21 | 663.1579 | Down 5th | v5 | vA |
22 | 694.7368 | Perfect 5th | P5 | A |
23 | 726.3157 | Up 5th | ^5 | ^A |
24 | 757.8947 | Aug 5th, dim 6th | A5, d6 | A#, Bbb |
25 | 789.4737 | Upaug 5th, downminor 6th | ^A5, vm6 | ^A#, vBb |
26 | 821.0526 | Minor 6th | m6 | Bb |
27 | 852.6316 | Mid 6th | ~6 | Bv |
28 | 884.2105 | Major 6th | M6 | B |
29 | 915.7895 | Upmajor 6th | ^M6 | ^B |
30 | 947.3684 | Aug 6th, dim 7th | A6, d7 | B#, Cb |
31 | 978.9474 | Downminor 7th | vm7 | Cv |
32 | 1010.5263 | Minor 7th | m7 | C |
33 | 1042.1053 | Mid 7th | ~7 | C^ |
34 | 1073.6843 | Major 7th | M7 | C# |
35 | 1105.2632 | Upmajor 7th, Downdim 8ve | ^M7, vd8 | ^C#, vDb |
36 | 1136.8421 | Aug 7th, dim 8ve | A7, d8 | Cx, Db |
37 | 1168.4211 | Down 8ve | v8 | vD |
38 | 1200.0000 | Perfect 8ve | P8 | D |
* Ups and downs may be substituted with semi-sharps and semi-flats, respectively