69edo: Difference between revisions
m Moving from Category:Edo to Category:Equal divisions of the octave using Cat-a-lot |
Carmen14edo (talk | contribs) 69edo approximation list is about 1/4-1/3 complete. I'm just saving to make sure I don't lose any progress. |
||
Line 2: | Line 2: | ||
In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step. It also supports the 12&69 temperament tempering out 3125/3087 along with [[81/80]]. In the 11-limit it tempers out [[99/98]], and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in [[31edo|31EDO]] but not in 69. | In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step. It also supports the 12&69 temperament tempering out 3125/3087 along with [[81/80]]. In the 11-limit it tempers out [[99/98]], and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in [[31edo|31EDO]] but not in 69. | ||
{| class="wikitable center-1 right-3" | |||
|- | |||
!Degree | |||
!Name and Abbreviation | |||
!Cents | |||
!Approximate Ratios* | |||
!Error (abs, [[cent|¢]]) | |||
|- | |||
|0 | |||
|Natural Unison, 1 | |||
|0.000 | |||
|[[1/1]] | |||
|0.000 | |||
|- | |||
|1 | |||
| | |||
|17.391 | |||
| | |||
| | |||
|- | |||
|2 | |||
| | |||
|34.783 | |||
| | |||
| | |||
|- | |||
|3 | |||
| | |||
|52.174 | |||
|20/19 | |||
| -1.844 | |||
|- | |||
|4 | |||
| | |||
|69.565 | |||
| | |||
| | |||
|- | |||
|5 | |||
| | |||
|86.957 | |||
| | |||
| | |||
|- | |||
|6 | |||
| | |||
|104.348 | |||
|17/16 | |||
| -0.608 | |||
|- | |||
|7 | |||
| | |||
|121.739 | |||
|15/14 | |||
|2.296 | |||
|- | |||
|8 | |||
| | |||
|139.130 | |||
|13/12 | |||
|0.558 | |||
|- | |||
|9 | |||
| | |||
|156.522 | |||
| | |||
| | |||
|- | |||
|10 | |||
| | |||
|173.913 | |||
| | |||
| | |||
|- | |||
|11 | |||
| | |||
|191.304 | |||
|19/17 | |||
| -1.253 | |||
|- | |||
|12 | |||
| | |||
|208.696 | |||
|9/8 | |||
|4.786 | |||
|- | |||
|13 | |||
| | |||
|226.087 | |||
|8/7 | |||
| -5.087 | |||
|- | |||
|14 | |||
| | |||
|243.478 | |||
|23/20 | |||
|1.518 | |||
|- | |||
|15 | |||
| | |||
|260.870 | |||
|7/6, 29/25 | |||
| -6.001, 3.920 | |||
|- | |||
|16 | |||
| | |||
|278.261 | |||
|27/23 | |||
|0.670 | |||
|- | |||
|17 | |||
| | |||
|295.652 | |||
|32/27 | |||
|1.517 | |||
|- | |||
|18 | |||
| | |||
|313.043 | |||
|[[6/5]] | |||
| -2.598 | |||
|- | |||
|19 | |||
| | |||
|330.435 | |||
|23/19 | |||
| -0.327 | |||
|- | |||
|20 | |||
| | |||
|347.826 | |||
|[[11/9]] | |||
|0.418 | |||
|- | |||
|21 | |||
| | |||
|365.217 | |||
|21/17 | |||
| -0.608 | |||
|- | |||
|22 | |||
| | |||
|382.609 | |||
|[[5/4]] | |||
| -3.705 | |||
|- | |||
|23 | |||
| | |||
|400.000 | |||
| | |||
| | |||
|- | |||
|24 | |||
| | |||
|417.391 | |||
|14/11 | |||
| -0.117 | |||
|- | |||
|25 | |||
| | |||
|434.783 | |||
|9/7 | |||
| -0.301 | |||
|- | |||
|26 | |||
| | |||
|452.174 | |||
|13/10 | |||
| -2.040 | |||
|- | |||
|27 | |||
| | |||
|469.565 | |||
|21/16 | |||
| -1.216 | |||
|- | |||
|28 | |||
| | |||
|486.957 | |||
| | |||
| | |||
|- | |||
|29 | |||
| | |||
|504.348 | |||
|[[4/3]] | |||
|6.303 | |||
|- | |||
|30 | |||
| | |||
|521.739 | |||
|23/17 | |||
| -1.580 | |||
|- | |||
|31 | |||
| | |||
|539.130 | |||
|15/11 | |||
|2.180 | |||
|- | |||
|32 | |||
| | |||
|556.522 | |||
|11/8, 29/21 | |||
|5.204, -2.275 | |||
|- | |||
|33 | |||
| | |||
|573.913 | |||
|7/5, 25/18 | |||
| -8.600, 5.196 | |||
|- | |||
|34 | |||
| | |||
|591.304 | |||
|31/22 | |||
| -2.413 | |||
|- | |||
|35 | |||
| | |||
|608.696 | |||
|10/7, 27/19 | |||
| -8.792, 0.344 | |||
|- | |||
|36 | |||
| | |||
|626.087 | |||
|33/23 | |||
|1.088 | |||
|- | |||
|37 | |||
| | |||
|643.478 | |||
|29/20 | |||
|0.215 | |||
|- | |||
|38 | |||
| | |||
|660.870 | |||
|19/13, 22/15 | |||
|3.884, -2.180 | |||
|- | |||
|39 | |||
| | |||
|678.261 | |||
|34/23, 37/25 | |||
|1.580, -0.456 | |||
|- | |||
|40 | |||
| | |||
|695.652 | |||
|[[3/2]] | |||
| -6.303 | |||
|- | |||
|41 | |||
| | |||
|713.043 | |||
| | |||
| | |||
|- | |||
|42 | |||
| | |||
|730.435 | |||
| | |||
| | |||
|- | |||
|43 | |||
| | |||
|747.826 | |||
| | |||
| | |||
|- | |||
|44 | |||
| | |||
|765.217 | |||
| | |||
| | |||
|- | |||
|45 | |||
| | |||
|782.609 | |||
| | |||
| | |||
|- | |||
|46 | |||
| | |||
|800.000 | |||
| | |||
| | |||
|- | |||
|47 | |||
| | |||
|817.391 | |||
| | |||
| | |||
|- | |||
|48 | |||
| | |||
|834.783 | |||
| | |||
| | |||
|- | |||
|49 | |||
| | |||
|852.174 | |||
| | |||
| | |||
|- | |||
|50 | |||
| | |||
|869.565 | |||
| | |||
| | |||
|- | |||
|51 | |||
| | |||
|886.957 | |||
| | |||
| | |||
|- | |||
|52 | |||
| | |||
|904.348 | |||
| | |||
| | |||
|- | |||
|53 | |||
| | |||
|921.739 | |||
| | |||
| | |||
|- | |||
|54 | |||
| | |||
|939.130 | |||
| | |||
| | |||
|- | |||
|55 | |||
| | |||
|956.522 | |||
| | |||
| | |||
|- | |||
|56 | |||
| | |||
|973.913 | |||
| | |||
| | |||
|- | |||
|57 | |||
| | |||
|991.304 | |||
| | |||
| | |||
|- | |||
|58 | |||
| | |||
|1008.696 | |||
| | |||
| | |||
|- | |||
|59 | |||
| | |||
|1026.087 | |||
| | |||
| | |||
|- | |||
|60 | |||
| | |||
|1043.478 | |||
| | |||
| | |||
|- | |||
|61 | |||
| | |||
|1060.870 | |||
| | |||
| | |||
|- | |||
|62 | |||
| | |||
|1078.261 | |||
| | |||
| | |||
|- | |||
|63 | |||
| | |||
|1095.652 | |||
| | |||
| | |||
|- | |||
|64 | |||
| | |||
|1113.043 | |||
| | |||
| | |||
|- | |||
|65 | |||
| | |||
|1130.435 | |||
| | |||
| | |||
|- | |||
|66 | |||
| | |||
|1147.826 | |||
| | |||
| | |||
|- | |||
|67 | |||
| | |||
|1165.217 | |||
| | |||
| | |||
|- | |||
|68 | |||
| | |||
|1182.609 | |||
| | |||
| | |||
|- | |||
|69 | |||
|Octave, 8 | |||
|1200.000 | |||
|[[2/1]] | |||
|0.000 | |||
|} | |||
<nowiki>*</nowiki>some simpler ratios listed | |||
[[Category:meantone]] | [[Category:meantone]] | ||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] |
Revision as of 11:06, 21 December 2020
The 69 equal division or 69-EDO, which divides the octave into 69 equal parts of 17.391 cents each, has been called "the love-child of 23edo and quarter-comma meantone". Nice. As a meantone system, it is on the flat side, with a fifth of 695.652 cents. Such a fifth is closer to 2/7-comma meantone than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes.
In the 7-limit it is a mohajira system, tempering out 6144/6125, but not a septimal meantone system, as 126/125 maps to one step. It also supports the 12&69 temperament tempering out 3125/3087 along with 81/80. In the 11-limit it tempers out 99/98, and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in 31EDO but not in 69.
Degree | Name and Abbreviation | Cents | Approximate Ratios* | Error (abs, ¢) |
---|---|---|---|---|
0 | Natural Unison, 1 | 0.000 | 1/1 | 0.000 |
1 | 17.391 | |||
2 | 34.783 | |||
3 | 52.174 | 20/19 | -1.844 | |
4 | 69.565 | |||
5 | 86.957 | |||
6 | 104.348 | 17/16 | -0.608 | |
7 | 121.739 | 15/14 | 2.296 | |
8 | 139.130 | 13/12 | 0.558 | |
9 | 156.522 | |||
10 | 173.913 | |||
11 | 191.304 | 19/17 | -1.253 | |
12 | 208.696 | 9/8 | 4.786 | |
13 | 226.087 | 8/7 | -5.087 | |
14 | 243.478 | 23/20 | 1.518 | |
15 | 260.870 | 7/6, 29/25 | -6.001, 3.920 | |
16 | 278.261 | 27/23 | 0.670 | |
17 | 295.652 | 32/27 | 1.517 | |
18 | 313.043 | 6/5 | -2.598 | |
19 | 330.435 | 23/19 | -0.327 | |
20 | 347.826 | 11/9 | 0.418 | |
21 | 365.217 | 21/17 | -0.608 | |
22 | 382.609 | 5/4 | -3.705 | |
23 | 400.000 | |||
24 | 417.391 | 14/11 | -0.117 | |
25 | 434.783 | 9/7 | -0.301 | |
26 | 452.174 | 13/10 | -2.040 | |
27 | 469.565 | 21/16 | -1.216 | |
28 | 486.957 | |||
29 | 504.348 | 4/3 | 6.303 | |
30 | 521.739 | 23/17 | -1.580 | |
31 | 539.130 | 15/11 | 2.180 | |
32 | 556.522 | 11/8, 29/21 | 5.204, -2.275 | |
33 | 573.913 | 7/5, 25/18 | -8.600, 5.196 | |
34 | 591.304 | 31/22 | -2.413 | |
35 | 608.696 | 10/7, 27/19 | -8.792, 0.344 | |
36 | 626.087 | 33/23 | 1.088 | |
37 | 643.478 | 29/20 | 0.215 | |
38 | 660.870 | 19/13, 22/15 | 3.884, -2.180 | |
39 | 678.261 | 34/23, 37/25 | 1.580, -0.456 | |
40 | 695.652 | 3/2 | -6.303 | |
41 | 713.043 | |||
42 | 730.435 | |||
43 | 747.826 | |||
44 | 765.217 | |||
45 | 782.609 | |||
46 | 800.000 | |||
47 | 817.391 | |||
48 | 834.783 | |||
49 | 852.174 | |||
50 | 869.565 | |||
51 | 886.957 | |||
52 | 904.348 | |||
53 | 921.739 | |||
54 | 939.130 | |||
55 | 956.522 | |||
56 | 973.913 | |||
57 | 991.304 | |||
58 | 1008.696 | |||
59 | 1026.087 | |||
60 | 1043.478 | |||
61 | 1060.870 | |||
62 | 1078.261 | |||
63 | 1095.652 | |||
64 | 1113.043 | |||
65 | 1130.435 | |||
66 | 1147.826 | |||
67 | 1165.217 | |||
68 | 1182.609 | |||
69 | Octave, 8 | 1200.000 | 2/1 | 0.000 |
*some simpler ratios listed