227edo: Difference between revisions
Jump to navigation
Jump to search
m Moving from Category:Edo to Category:Equal divisions of the octave using Cat-a-lot |
Cmloegcmluin (talk | contribs) link to new page for Supports |
||
Line 1: | Line 1: | ||
'''227EDO''' is the [[EDO|equal division of the octave]] into 227 parts of 5.2863 [[cent]]s each. It tempers out 15625/15552 (kleisma) and |61 -37 -1> in the 5-limit; 5120/5103, 65625/65536, and 117649/116640 in the 7-limit, so that it | '''227EDO''' is the [[EDO|equal division of the octave]] into 227 parts of 5.2863 [[cent]]s each. It tempers out 15625/15552 (kleisma) and |61 -37 -1> in the 5-limit; 5120/5103, 65625/65536, and 117649/116640 in the 7-limit, so that it [[support]]s [[Kleismic_family#Countercata|countercata temperament]]. In the 11-limit, it tempers out 385/384, 2200/2187, 3388/3375, and 12005/11979, so that it provides the [[Optimal_patent_val|optimal patent val]] for 11-limit countercata. In the 13-limit, it tempers out 325/324, 352/351, 625/624, and 847/845. 227EDO is accurate for the 13th harmonic, as the denominator of a convergent to log<sub>2</sub>13, after [[10edo|10]] and before [[5231edo|5231]]. | ||
227EDO is the 49th prime EDO. | 227EDO is the 49th prime EDO. |
Revision as of 18:14, 25 January 2022
227EDO is the equal division of the octave into 227 parts of 5.2863 cents each. It tempers out 15625/15552 (kleisma) and |61 -37 -1> in the 5-limit; 5120/5103, 65625/65536, and 117649/116640 in the 7-limit, so that it supports countercata temperament. In the 11-limit, it tempers out 385/384, 2200/2187, 3388/3375, and 12005/11979, so that it provides the optimal patent val for 11-limit countercata. In the 13-limit, it tempers out 325/324, 352/351, 625/624, and 847/845. 227EDO is accurate for the 13th harmonic, as the denominator of a convergent to log213, after 10 and before 5231.
227EDO is the 49th prime EDO.