44edf: Difference between revisions
No edit summary |
Cmloegcmluin (talk | contribs) →Related regular temperaments: map → mapping |
||
Line 460: | Line 460: | ||
POTE generator: ~|-104 29 25> = 15.9540 | POTE generator: ~|-104 29 25> = 15.9540 | ||
Mapping: [<1 1 3|, <0 44 -51|] | |||
EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836 | EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836 | ||
Line 469: | Line 469: | ||
POTE generator: ~|-104 29 25> = 15.9535 | POTE generator: ~|-104 29 25> = 15.9535 | ||
Mapping: [<1 1 3 1|, <0 44 -51 185|] | |||
EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084 | EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084 | ||
Line 478: | Line 478: | ||
POTE generator: ~|-104 29 25> = 15.9540 | POTE generator: ~|-104 29 25> = 15.9540 | ||
Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|] | |||
EDOs: 677, 1053, 1730, 2407, 3084, 4137 | EDOs: 677, 1053, 1730, 2407, 3084, 4137 |
Revision as of 20:01, 5 November 2021
44EDF is the equal division of the just perfect fifth into 44 parts of 15.9535 cents each, corresponding to 75.2185 edo. It is related to the regular temperament which tempers out |183 -51 -44> in the 5-limit, which is supported by 301, 376, 677, 1053, 1429, 1730, 2407, and 2783 EDOs.
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 15.9535 | ||
2 | 31.907 | ||
3 | 47.8606 | ||
4 | 63.8141 | ||
5 | 79.7676 | 22/21 | |
6 | 95.7211 | 37/35 | |
7 | 111.6747 | 16/15 | |
8 | 127.6282 | 14/13 | |
9 | 143.5817 | 25/23 | |
10 | 159.5352 | 34/31 | |
11 | 175.48875 | 31/28 | |
12 | 191.4423 | 19/17 | |
13 | 207.3958 | 62/55 | |
14 | 223.3493 | 33/29 | |
15 | 239.3028 | 31/27 | |
16 | 255.2564 | 51/44 | |
17 | 271.2099 | 62/53 | |
18 | 287.1634 | ||
19 | 303.1169 | 81/68 | |
20 | 319.0705 | 6/5 | |
21 | 335.024 | ||
22 | 350.9775 | 60/49, 49/40 | |
23 | 366.931 | ||
24 | 382.8845 | 5/4 | |
25 | 398.8381 | 34/27 | |
26 | 414.7916 | 14/11 | |
27 | 430.7451 | 9/7 | |
28 | 446.6986 | 22/17 | |
29 | 462.6522 | ||
30 | 478.6057 | ||
31 | 494.5592 | 4/3 | |
32 | 510.5127 | ||
33 | 526.46625 | 42/31, 27/20 | |
34 | 542.4198 | ||
35 | 558.3733 | ||
36 | 574.3268 | ||
37 | 590.2803 | 45/32 | |
38 | 606.2339 | ||
39 | 622.1874 | 63/44 | |
40 | 638.1409 | 81/56 | |
41 | 654.0944 | ||
42 | 670.048 | ||
43 | 686.0015 | 40/27 | |
44 | 701.955 | exact 3/2 | just perfect fifth |
45 | 717.8985 | 243/160 | |
46 | 733.862 | ||
47 | 749.8156 | ||
48 | 765.7691 | 14/9 | |
49 | 781.7226 | 11/7 | |
50 | 797.6761 | ||
51 | 813.6297 | 8/5 | |
52 | 829.5832 | ||
53 | 845.5367 | ||
54 | 861.4902 | ||
55 | 877.44375 | 5/3 | |
56 | 893.3973 | ||
57 | 909.3508 | 27/16 | |
58 | 925.3043 | ||
59 | 941.2578 | ||
60 | 957.2184 | 153/88 | |
61 | 973.1649 | 7/4 | |
62 | 989.1184 | 99/56 | |
63 | 1005.0719 | 243/136 | |
64 | 1021.0255 | 9/5 | |
65 | 1036.979 | ||
66 | 1052.9325 | ||
67 | 1068.886 | 13/7 | |
68 | 1084.89355 | 15/8 | |
69 | 1100.7931 | ||
70 | 1116.7466 | ||
71 | 1132.7001 | ||
72 | 1148.6536 | ||
73 | 1164.9072 | ||
74 | 1180.5607 | 160/81 | |
75 | 1196.5142 | 2/1 | |
76 | 1212.4677 | ||
77 | 1228.42125 | ||
78 | 1244.3748 | ||
79 | 1260.3283 | ||
80 | 1276.2818 | ||
81 | 1292.2353 | ||
82 | 1308.1889 | ||
83 | 1324.1424 | ||
84 | 1340.0959 | ||
85 | 1356.0494 | ||
86 | 1372.003 | ||
87 | 1387.9565 | 20/9 | |
88 | 1403.91 | exact 9/4 |
Related regular temperaments
5-limit 677&1053
Comma: |183 -51 -44>
POTE generator: ~|-104 29 25> = 15.9540
Mapping: [<1 1 3|, <0 44 -51|]
EDOs: 75, 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3836
2.3.5.11 677&1053
Commas: 184549376/184528125, 38084983750656/38060880859375
POTE generator: ~|-104 29 25> = 15.9535
Mapping: [<1 1 3 1|, <0 44 -51 185|]
EDOs: 301, 376, 677, 978, 1053, 1429, 1730, 2407, 2783, 3084
13-limit 677&1053
Commas: 6656/6655, 184549376/184528125, 1162261467/1161875000
POTE generator: ~|-104 29 25> = 15.9540
Mapping: [<1 1 3 1 -3|, <0 44 -51 185 504|]
EDOs: 677, 1053, 1730, 2407, 3084, 4137