71edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Line 1: Line 1:
'''[[Edt|Division of the third harmonic]] into 71 equal parts''' (71edt) is related to [[45edo|45 edo]], but with the 3/1 rather than the 2/1 being just. The octave is about 5.4644 cents stretched and the step size is about 26.7881 cents. It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by [[45edo]] (45ef val), [[179edo]] (179ef val), [[224edo]], [[269edo]] (269ce val), and [[403edo]] (403def val).
'''71EDT''' is the [[Edt|equal division of the third harmonic]] into 71 parts of 26.7881 [[cent|cents]] each, corresponding to 44.7960 [[edo]] (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by [[45edo]] (45ef val), [[179edo]] (179ef val), [[224edo]], [[269edo]] (269ce val), and [[403edo]] (403def val).


{| class="wikitable"
{| class="wikitable"

Revision as of 00:43, 29 January 2019

71EDT is the equal division of the third harmonic into 71 parts of 26.7881 cents each, corresponding to 44.7960 edo (45edo with 5.4644 cents octave stretch). It is related to the 13-limit temperament which tempers out 540/539, 1575/1573, 2200/2197, and 4375/4374, which is supported by 45edo (45ef val), 179edo (179ef val), 224edo, 269edo (269ce val), and 403edo (403def val).

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 26.7881 66/65
2 53.5762 65/63
3 80.3643 22/21
4 107.1524 117/110
5 133.9405 27/25
6 160.7286 169/154
7 187.5167 39/35
8 214.3048 147/130, 198/175
9 241.0929 169/147
10 267.8810 7/6
11 294.6691 77/65
12 321.4572
13 348.2453 11/9
14 375.0334 273/220
15 401.8215 63/50
16 428.6096
17 455.3977 13/10
18 482.1858 33/25
19 508.9739
20 535.7620 15/11
21 562.5501 18/13
22 589.3382
23 616.1263 10/7
24 642.9144 132/91
25 669.7025
26 696.4906 486/325, 220/147
27 723.2787
28 750.0668 54/35
29 776.8549
30 803.6430 35/22
31 830.4311 21/13
32 857.2192
33 884.0073 5/3
34 910.7954 22/13
35 937.5835 189/110
36 964.3715 110/63
37 991.1596 39/22
38 1017.9477 9/5
39 1044.7358
40 1071.5239 13/7
41 1098.3120 66/35
42 1125.1001
43 1151.8882 35/18
44 1178.6763
45 1205.4644 441/220, 325/162
46 1232.2525
47 1259.0406 91/44
48 1285.8287 21/10
49 1312.6168
50 1339.4049 13/6
51 1366.1930 11/5
52 1392.9811
53 1419.7692 25/11
54 1446.5573 30/13
55 1473.3454
56 1500.1335 50/21
57 1526.9216 220/91
58 1553.7097 27/11
59 1580.4978
60 1607.2859 195/77
61 1634.0740 18/7
62 1660.8621 441/169
63 1687.6502 175/66, 130/49
64 1714.4383 35/13, 132/49
65 1741.2264 462/169
66 1768.0145 25/9
67 1794.8026 110/39
68 1821.5907 63/22
69 1848.3788 189/65
70 1875.1669 65/22
71 1901.9550 exact 3/1 just perfect fifth plus an octave