96ed7: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Xenllium (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
Line 50: Line 50:
| | 8
| | 8
| | 280.7355
| | 280.7355
| |  
| | [[20/17]]
| |  
| |  
|-
|-
Line 145: Line 145:
| | 27
| | 27
| | 947.4823
| | 947.4823
| | 216/125
| | 216/125, 140/81
| |  
| |  
|-
|-
| | 28
| | 28
| | 982.5742
| | 982.5742
| |  
| | [[30/17]]
| |  
| |  
|-
|-
Line 190: Line 190:
| | 36
| | 36
| | 1263.3097
| | 1263.3097
| | [[648/625|1296/625]]
| | [[648/625|1296/625]], [[28/27|56/27]]
| |  
| |  
|-
|-
Line 245: Line 245:
| | 47
| | 47
| | 1649.3210
| | 1649.3210
| |  
| | 70/27
| |  
| |  
|-
|-
| | 48
| | 48
| | 1684.4130
| | 1684.4130
| |  
| | 119/45, 45/17
| |  
| |  
|-
|-
Line 310: Line 310:
| | 60
| | 60
| | 2105.5162
| | 2105.5162
| |  
| | [[27/16|27/8]]
| |  
| |  
|-
|-
Line 350: Line 350:
| | 68
| | 68
| | 2386.2517
| | 2386.2517
| |  
| | 119/30
| |  
| |  
|-
|-
| | 69
| | 69
| | 2421.3436
| | 2421.3436
| |  
| | [[81/80|81/20]]
| |  
| |  
|-
|-
Line 385: Line 385:
| | 75
| | 75
| | 2631.8952
| | 2631.8952
| | [[32/7]]
| | [[8/7|32/7]]
| |  
| |  
|-
|-
Line 450: Line 450:
| | 88
| | 88
| | 3088.0904
| | 3088.0904
| |  
| | 119/20
| |  
| |  
|-
|-

Revision as of 02:15, 6 January 2019

Division of the 7th harmonic into 96 equal parts (96ed7) is related to the Carlos Gamma, but with the 7/1 rather than the 3/2 being just. The step size is about 35.0919 cents, similar to every fifth step of 171edo.

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 35.0919 50/49, 49/48
2 70.1839 25/24
3 105.2758 17/16
4 140.3677
5 175.4597
6 210.5516
7 245.6436 144/125
8 280.7355 20/17
9 315.8274 6/5
10 350.9194
11 386.0113 5/4
12 421.1032 51/40
13 456.1952 125/96
14 491.2871
15 526.3790
16 561.4710
17 596.5629 24/17
18 631.6549 36/25
19 666.7468 72/49
20 701.8387 3/2
21 736.9307
22 772.0226 25/16
23 807.1145 51/32
24 842.2065
25 877.2984
26 912.3903
27 947.4823 216/125, 140/81
28 982.5742 30/17
29 1017.6662 9/5
30 1052.7581
31 1087.8500 15/4
32 1122.9420
33 1158.0339 125/64
34 1193.1258
35 1228.2178 128/63
36 1263.3097 1296/625, 56/27
37 1298.4017 36/17
38 1333.4936 54/25
39 1368.5855
40 1403.6775 9/4
41 1438.7694
42 1473.8613 225/96
43 1508.9533
44 1544.0452
45 1579.1371
46 1614.2291
47 1649.3210 70/27
48 1684.4130 119/45, 45/17
49 1719.5049 27/10
50 1754.5968
51 1789.6888 45/16
52 1824.7807
53 1859.8726
54 1894.9646
55 1930.0565 64/21
56 1965.1484 28/9
57 2000.2404
58 2035.3323
59 2070.4243
60 2105.5162 27/8
61 2140.6081
62 2175.7001
63 2210.7920
64 2245.8839
65 2280.9759 28/15
66 2316.0678
67 2351.1597 35/9
68 2386.2517 119/30
69 2421.3436 81/20
70 2456.4356
71 2491.5275
72 2526.6194
73 2961.7114
74 2596.8033 112/25
75 2631.8952 32/7
76 2666.9872 14/3
77 2702.0791
78 2737.1710 175/36
79 2772.2630
80 2807.3549
81 2842.4469
82 2877.5388
83 2912.6307
84 2947.7227 192/35
85 2982.8146 28/5
86 3017.9065 40/7
87 3052.9985 35/6
88 3088.0904 119/20
89 3123.1824
90 3158.2743
91 3193.3662
92 3228.4582
93 3263.5501
94 3298.6420 168/25
95 3333.7340 48/7
96 3368.8259 exact 7/1 harmonic seventh plus two octaves