User:Moremajorthanmajor/15edX: Difference between revisions
→Intervals: horizontally shortened first table, mostly by abbreviating the words Minimum and Maximum - at the same time increases significance, aligned cell content horizontally |
No edit summary |
||
Line 157: | Line 157: | ||
| colspan="2" |822.857 | | colspan="2" |822.857 | ||
| colspan="2" |832 | | colspan="2" |832 | ||
| colspan="2" | | | colspan="2" |840 | ||
| colspan="2" |853.333 | | colspan="2" |853.333 | ||
| colspan="2" |860.69 | | colspan="2" |860.69 | ||
Line 172: | Line 172: | ||
| colspan="2" |925.714 | | colspan="2" |925.714 | ||
| colspan="2" |936 | | colspan="2" |936 | ||
| colspan="2" | | | colspan="2" |945 | ||
| colspan="2" |960 | | colspan="2" |960 | ||
| colspan="2" |968.276 | | colspan="2" |968.276 | ||
Line 380: | Line 380: | ||
|1534.408-1560.408 | |1534.408-1560.408 | ||
|1573.314-1599.314 | |1573.314-1599.314 | ||
|}Golden | |}Golden tunings±13¢ | ||
{| class="wikitable" style="text-align: center" | |||
{| class="wikitable" | |||
! rowspan="4" |Degrees | ! rowspan="4" |Degrees | ||
! colspan="2" rowspan="4" |Enneatonic | ! colspan="2" rowspan="4" |Enneatonic | ||
! colspan=" | ! colspan="4" |Minor mode Middletown temperament | ||
! colspan=" | !Neutral mode Middletown temperament | ||
! colspan="6" |Major mode Middletown temperament | |||
|- | |- | ||
! | ! rowspan="3" |Aeolian-Dorian | ||
! colspan=" | ! colspan="3" |Dorian | ||
! colspan=" | ! colspan="2" rowspan="3" |Dorian-Mixolydian | ||
! | ! colspan="4" |Mixolydian | ||
! rowspan="3" | | ! rowspan="3" |Mixolydian-Ionian | ||
|- | |- | ||
! rowspan="2" | | ! rowspan="2" |Subpental | ||
! rowspan="2" | | ! rowspan="2" |Pental | ||
! rowspan="2" | | ! rowspan="2" |Superpental | ||
! rowspan="2" | | ! rowspan="2" |Subpental | ||
! rowspan="2" | | ! rowspan="2" |Pental | ||
! | ! colspan="2" |Superpental | ||
|- | |- | ||
! | !Soft | ||
! | !Intense | ||
|- | |- | ||
|1 | | |1 | ||
| colspan="2" |F#/Gb | | colspan="2" |F#/Gb | ||
| | | |96.457-98.19 | ||
| | |97.39-99.123 | ||
| | |100.618-102.351 | ||
| | |101.245-102.978 | ||
|105.788 | | colspan="2" |102.788-104.5215 | ||
|106.04 | |103.855-105.788 | ||
|106.664 | |104.306-106.04 | ||
|106.664-108.398 | |||
|108.4245-110.158 | |||
|108.4245 | |109.6375-111.371 | ||
|109.6375 | |||
|- | |- | ||
|2 | | |2 | ||
| colspan="2" |G | | colspan="2" |G | ||
| | | |192.913-196.38 | ||
| | |194.78-198.247 | ||
| | |201.236-204.702 | ||
| | |202.49-205.956 | ||
|211.576 | | colspan="2" |205.576-209.043 | ||
|212.08 | |207.709-211.576 | ||
|213.329 | |208.613-212.08 | ||
|213.329-216.795 | |||
|216.849-220.316 | |||
|216.849 | |219.275-222.742 | ||
|219.275 | |||
|- | |- | ||
|3 | | |3 | ||
|G#/Jb | |G#/Jb | ||
|''G#/Ab'' | |''G#/Ab'' | ||
| | | |289.37-294.57 | ||
| | |292.17-297.37 | ||
| | |301.854-204.702 | ||
| | |303.734-308.934 | ||
|317.364 | | colspan="2" |308.365-313.565 | ||
|318.119 | |311.564-317.364 | ||
|319.993 | |312.919-318.119 | ||
|319.993-325.193 | |||
|325.273-330.473 | |||
|325.273 | |328.913-334.113 | ||
|328.913 | |||
|- | |- | ||
|4 | | |4 | ||
|J | |J | ||
|''A'' | |''A'' | ||
| | | |385.829-392.76 | ||
| | |389.56-396.493 | ||
| | |402.4715-307.054 | ||
| | |404.979-411.9215 | ||
|423.152 | | colspan="2" |411.153-418.086 | ||
|424.159 | |415.419-423.152 | ||
|426.657 | |417.226-424.159 | ||
|426.657-433.5905 | |||
|433.698-440.631 | |||
|433.698 | |438.55-445.4835 | ||
|438.55 | |||
|- | |- | ||
|5 | | |5 | ||
|A | |A | ||
|''B'' | |''B'' | ||
| | | |482.284-490.95 | ||
| | |486.95-495.617 | ||
| | |503.089-511.756 | ||
| | |509.502-514.891 | ||
|528.94 | | colspan="2" |513.941-526.308 | ||
|530.199 | |519.2735-528.94 | ||
|533.321 | |521.532-530.199 | ||
|533.321-541.988 | |||
|542.122-550.789 | |||
|542.122 | |548.188-556.854 | ||
|548.188 | |||
|- | |- | ||
|6 | | |6 | ||
|A#/Bb | |A#/Bb | ||
|''B#/Hb'' | |''B#/Hb'' | ||
| | | |578.74-589.14 | ||
| | |584.334-594.74 | ||
| | |603.707-614.107 | ||
| | |607.469-617.869 | ||
|634.728 | | colspan="2" |616.729-627.129 | ||
|636.238 | |623.128-634.728 | ||
|639.987 | |625.8385-636.238 | ||
|639.987-650.386 | |||
|650.547-660.947 | |||
|650.547 | |657.825-668.225 | ||
|657.825 | |||
|- | |- | ||
|7 | | |7 | ||
|B | |B | ||
|''H'' | |''H'' | ||
| | | |675.197-687.33 | ||
| | |681.73-693.863 | ||
| | |704.325-716.4585 | ||
| | |708.7135-720.847 | ||
|740.516 | | colspan="2" |719.5175-731.651 | ||
|742.278 | |726.983-740.516 | ||
|746.65 | |730.145-742.278 | ||
|746.65-758.783 | |||
|758.971-771.105 | |||
|758.971 | |767.463-779.596 | ||
|767.463 | |||
|- | |- | ||
|8 | |8 | ||
|B#/Hb | |B#/Hb | ||
|''H#/Cb'' | |''H#/Cb'' | ||
| | |771.654-785.52 | ||
| | |779.12-792.9865 | ||
| | |804.943-818.81 | ||
| | |809.958-823.825 | ||
| | | colspan="2" |822.306-836.172 | ||
| | |830.8375-844.704 | ||
| | |834.451-848.318 | ||
|867.181 | |853.314-867.181 | ||
|867.396-881.262 | |||
|867.396 | |877.1-890.967 | ||
|877.1 | |||
|- | |- | ||
|9 | |9 | ||
|H | |H | ||
|''C'' | |''C'' | ||
| | |868.1105-883.7105 | ||
| | |876.51-892.11 | ||
| | |905.561-921.161 | ||
| | |911.203-926.823 | ||
|952.092 | | colspan="2" |925.094-940.694 | ||
|954.358 | |934.693-952.092 | ||
| | |938.758-954.358 | ||
|959.9785-975.5785 | |||
|975.82-991.42 | |||
|975.82 | |986.738-1002.338 | ||
|986.738 | |||
|- | |- | ||
|10 | |10 | ||
|C | |C | ||
|''D'' | |''D'' | ||
| | |964.567-981.901 | ||
| | |973.9-991.233 | ||
| | |1006.179-1023.512 | ||
| | |1012.448-1029.781 | ||
|1057.88 | | colspan="2" |1027.882-1045.2155 | ||
|1060.3975 | |1038.547-1057.88 | ||
|1066.643 | |1043.064-1060.3975 | ||
|1066.643-1083.976 | |||
|1084.245-1101.578 | |||
|1084.245 | |1096.3755-1113.709 | ||
|1096.3755 | |||
|- | |- | ||
|11 | |11 | ||
|C#/Db | |C#/Db | ||
|''D#/Sb'' | |''D#/Sb'' | ||
| | |1061.024-1080.091 | ||
| | |1071.39-1090.356 | ||
| | |1106.797-1125.863 | ||
| | |1113.693-1132.759 | ||
|1163.668 | | colspan="2" |1130.67-1149.737 | ||
|1166.437 | |1142.402-1163.668 | ||
|1173.307 | |1147.3705-1166.437 | ||
|1173.307-1192.374 | |||
|1192.669-1211.736 | |||
|1192.669 | |1206.013-1225.08 | ||
|1206.013 | |||
|- | |- | ||
|12 | |12 | ||
|D | |D | ||
|''S'' | |''S'' | ||
| | |1157.481-1178.281 | ||
| | |1168.68-1189.48 | ||
| | |1207.4145-1228.2145 | ||
| | |1214.9375-1235.7375 | ||
|1269.456 | | colspan="2" |1233.459-1254.259 | ||
|1272.477 | |1246.256-1269.456 | ||
|1279.971 | |1251.677-1272.477 | ||
|1279.971-1300.771 | |||
|1301.0395-1321.8935 | |||
|1301.0395 | |1315.651-1336.451 | ||
|1315.651 | |||
|- | |- | ||
|13 | |13 | ||
|D#/Eb | |D#/Eb | ||
|''S#/Eb'' | |''S#/Eb'' | ||
| | |1253.937-1276.471 | ||
| | |1266.07-1288.603 | ||
| | |1308.032-1330.566 | ||
| | |1316.182-1338.716 | ||
|1275.244 | | colspan="2" |1336.247-1358.78 | ||
|1378.517 | |1353.111-1275.244 | ||
|1386.636 | |1355.983-1378.517 | ||
|1386.636-1409.169 | |||
|1409.518-1425.288 | |||
|1409.518 | |1438.993-1447.8215 | ||
|1438.993 | |||
|- | |- | ||
|14 | |14 | ||
| colspan="2" |E | | colspan="2" |E | ||
| | |1350.394-1374.661 | ||
| | |1363.46-1387.726 | ||
| | |1408.65-1432.917 | ||
| | |1417.427-1441.694 | ||
|1481.032 | | colspan="2" |1439.035-1463.302 | ||
|1484.556 | |1453.966-1481.032 | ||
|1493.3 | |1460.29-1484.556 | ||
|1493.3-1517.567 | |||
|1517.9425-1534.926 | |||
|1517.9425 | |1541.778-1559.192 | ||
|1541.778 | |||
|- | |- | ||
|15 | |15 | ||
| colspan="2" |F | | colspan="2" |F | ||
| | |1446.851-1472.851 | ||
| | |1460.85-1486.85 | ||
| | |1509.268-1535.268 | ||
| | |1518.672-1544.672 | ||
|1583.82 | | colspan="2" |1541.823-1567.823 | ||
|1590.596 | |1557.82-1583.82 | ||
|1599.964 | |1564.596-1590.596 | ||
|1599.964-1625.964 | |||
|1626.366-1652.366 | |||
|1626.366 | |1644.563-1670.563 | ||
|} | |||
|1644.563 | |||
By a surprising coincidence, the 15ed of the Golden tenth (7φ+6)\(5φ^2)edo is almost exactly every third degree of [[34edo]]. Additionally, those of the modal Golden tenths are almost exactly +1/28-syntonic comma 4ed(5/4) (Aeolian-Dorian), 9ed(5/3)/equal multiples of 18/17 (Subpental Dorian), 13ed(15/7) (Pental Dorian), 2ed(9/8) (Superpental Dorian), -1/12-syntonic comma 3ed(6/5) (Dorian-Mixolydian), 14ed(7/3)/equal multiples of 17/16/100π\3 cents (Subpental Mixolydian), 3ed(6/5) (Pental Mixolydian), -1/20-septimal comma 4ed(9/7)/-1/28-syntonic comma 14ed(12/5)/9ed(7/4) (Soft Superpental Mixolydian), 12ed(32/15) (Intense Superpental Mixolydian) and 8ed(5/3)/-1/9 schismic 9ed(16/9)/14ed(22/9) (Mixolydian-Ionian) respectively. | |||
|}By a surprising coincidence, the 15ed of the Golden tenth (7φ+6)\(5φ^2)edo is almost exactly every third degree of [[34edo]]. Additionally, those of the modal Golden tenths are almost exactly +1/28-syntonic comma 4ed(5/4) (Aeolian-Dorian), 9ed(5/3)/equal multiples of 18/17 (Subpental Dorian), 13ed(15/7) (Pental Dorian), 2ed(9/8) (Superpental Dorian), -1/12-syntonic comma 3ed(6/5) (Dorian-Mixolydian), 14ed(7/3)/equal multiples of 17/16/100π\3 cents (Subpental Mixolydian), 3ed(6/5) (Pental Mixolydian), -1/20-septimal comma 4ed(9/7)/-1/28-syntonic comma 14ed(12/5)/9ed(7/4) (Soft Superpental Mixolydian), 12ed(32/15) (Intense Superpental Mixolydian) and 8ed(5/3)/-1/9 schismic 9ed(16/9)/14ed(22/9) (Mixolydian-Ionian) respectively. | |||
[[Category:15-tone]] | [[Category:15-tone]] | ||
[[Category:ed7/3]] | [[Category:ed7/3]] |
Revision as of 22:14, 25 November 2018
15edX is the scale which occurs as the dominant minor edX.
Intervals
Degrees | Enneatonic | Minor mode Middletown temperament | Neutral mode Middletown temperament | Major mode Middletown temperament | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aeolian-Dorian | Dorian | Dorian-Mixolydian | Mixolydian | Mixolydian-Ionian | ||||||||||||||||||
Subpental | Pental | Superpental | Subpental | Pental | Superpental | |||||||||||||||||
Soft | Intense | |||||||||||||||||||||
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | |||
1 | F#/Gb | 96 | 97.778 | 100 | 101.818 | 102.857 | 104 | 105 | 106.667 | 107.586 | 110.345 | 112 | ||||||||||
2 | G | 192 | 195.556 | 200 | 203.636 | 205.714 | 208 | 210 | 213.333 | 215.172 | 220.69 | 224 | ||||||||||
3 | G#/Jb | G#/Ab | 288 | 293.333 | 300 | 305.4545 | 308.571 | 312 | 315 | 320 | 322.759 | 331.034 | 336 | |||||||||
4 | J | A | 384 | 391.111 | 400 | 407.273 | 411.429 | 416 | 420 | 426.667 | 430.345 | 441.379 | 448 | |||||||||
5 | A | B | 480 | 488.889 | 500 | 509.091 | 514.286 | 520 | 525 | 533.333 | 537.931 | 551.724 | 560 | |||||||||
6 | A#/Bb | B#/Hb | 576 | 586.667 | 600 | 610.909 | 617.143 | 624 | 630 | 640 | 645.517 | 662.069 | 672 | |||||||||
7 | B | H | 672 | 684.444 | 700 | 712.727 | 720 | 728 | 735 | 746.667 | 753.103 | 772.414 | 784 | |||||||||
8 | B#/Hb | H#/Cb | 768 | 782.822 | 800 | 814.5455 | 822.857 | 832 | 840 | 853.333 | 860.69 | 882.759 | 896 | |||||||||
9 | H | C | 864 | 880 | 900 | 916.364 | 925.714 | 936 | 945 | 960 | 968.276 | 993.103 | 1008 | |||||||||
10 | C | D | 960 | 977.778 | 1000 | 1018.182 | 1028.571 | 1040 | 1050 | 1066.667 | 1075.862 | 1103.448 | 1120 | |||||||||
11 | C#/Db | D#/Sb | 1056 | 1075.556 | 1100 | 1120 | 1131.429 | 1144 | 1155 | 1173.333 | 1183.448 | 1213.379 | 1232 | |||||||||
12 | D | S | 1152 | 1173.333 | 1200 | 1221.818 | 1234.286 | 1248 | 1260 | 1280 | 1291.034 | 1324.138 | 1344 | |||||||||
13 | D#/Eb | S#/Eb | 1248 | 1271.111 | 1300 | 1323.636 | 1337.143 | 1352 | 1365 | 1386.667 | 1398.621 | 1424.483 | 1456 | |||||||||
14 | E | 1344 | 1368.889 | 1400 | 1425.4545 | 1440 | 1456 | 1470 | 1493.333 | 1506.207 | 1544.827 | 1568 | ||||||||||
15 | F | 1440 | 1466.667 | 1500 | 1527.273 | 1542.857 | 1560 | 1575 | 1600 | 1613.793 | 1655.172 | 1680 |
Most harmonic tunings
Degrees | Enneatonic | Minor mode Middletown temperament | Neutral mode Middletown temperament | Major mode Middletown temperament | |
---|---|---|---|---|---|
7/3±13¢ | 22/9±13¢ | 5/2±13¢ | |||
1 | F#/Gb | 96.925-98.658 | 102.294-104.027 | 104.888-106.621 | |
2 | G | 193.8495-197.316 | 204.588-208.054 | 209.77-213.242 | |
3 | G#/Jb | G#/Ab | 290.774-295.974 | 306.8815-312.0815 | 314.663-319.863 |
4 | J | A | 387.699-394.632 | 409.1755-416.109 | 419.559-426.484 |
5 | A | B | 484.624-493.29 | 511.469-520.136 | 524.438-533.105 |
6 | A#/Bb | B#/Hb | 581.548-591.948 | 613.763-624.163 | 629.3255-639.7255 |
7 | B | H | 678.473-690.606 | 716.057-728.19 | 734.213-746.346 |
8 | B#/Hb | H#/Cb | 775.398-789.2645 | 818.351-832.218 | 839.101-852.967 |
9 | H | C | 872.3225-887.9225 | 920.645-936.245 | 943.988-959.588 |
10 | C | D | 969.247-986.561 | 1022.939-1040.272 | 1048.876-1066.209 |
11 | C#/Db | D#/Sb | 1066.172-1085.239 | 1125.2325-1144.299 | 1153.763-1172.83 |
12 | D | S | 1163.097-1183.897 | 1227.526-1248.326 | 1258.651-1279.451 |
13 | D#/Eb | S#/Eb | 1260.0215-1282.555 | 1329.82-1352.3535 | 1363.539-1386.072 |
14 | E | 1356.946-1381.213 | 1432.114-1456.381 | 1468.426-1492.693 | |
15 | F | 1453.871-1479.871 | 1534.408-1560.408 | 1573.314-1599.314 |
Golden tunings±13¢
Degrees | Enneatonic | Minor mode Middletown temperament | Neutral mode Middletown temperament | Major mode Middletown temperament | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aeolian-Dorian | Dorian | Dorian-Mixolydian | Mixolydian | Mixolydian-Ionian | |||||||||
Subpental | Pental | Superpental | Subpental | Pental | Superpental | ||||||||
Soft | Intense | ||||||||||||
1 | F#/Gb | 96.457-98.19 | 97.39-99.123 | 100.618-102.351 | 101.245-102.978 | 102.788-104.5215 | 103.855-105.788 | 104.306-106.04 | 106.664-108.398 | 108.4245-110.158 | 109.6375-111.371 | ||
2 | G | 192.913-196.38 | 194.78-198.247 | 201.236-204.702 | 202.49-205.956 | 205.576-209.043 | 207.709-211.576 | 208.613-212.08 | 213.329-216.795 | 216.849-220.316 | 219.275-222.742 | ||
3 | G#/Jb | G#/Ab | 289.37-294.57 | 292.17-297.37 | 301.854-204.702 | 303.734-308.934 | 308.365-313.565 | 311.564-317.364 | 312.919-318.119 | 319.993-325.193 | 325.273-330.473 | 328.913-334.113 | |
4 | J | A | 385.829-392.76 | 389.56-396.493 | 402.4715-307.054 | 404.979-411.9215 | 411.153-418.086 | 415.419-423.152 | 417.226-424.159 | 426.657-433.5905 | 433.698-440.631 | 438.55-445.4835 | |
5 | A | B | 482.284-490.95 | 486.95-495.617 | 503.089-511.756 | 509.502-514.891 | 513.941-526.308 | 519.2735-528.94 | 521.532-530.199 | 533.321-541.988 | 542.122-550.789 | 548.188-556.854 | |
6 | A#/Bb | B#/Hb | 578.74-589.14 | 584.334-594.74 | 603.707-614.107 | 607.469-617.869 | 616.729-627.129 | 623.128-634.728 | 625.8385-636.238 | 639.987-650.386 | 650.547-660.947 | 657.825-668.225 | |
7 | B | H | 675.197-687.33 | 681.73-693.863 | 704.325-716.4585 | 708.7135-720.847 | 719.5175-731.651 | 726.983-740.516 | 730.145-742.278 | 746.65-758.783 | 758.971-771.105 | 767.463-779.596 | |
8 | B#/Hb | H#/Cb | 771.654-785.52 | 779.12-792.9865 | 804.943-818.81 | 809.958-823.825 | 822.306-836.172 | 830.8375-844.704 | 834.451-848.318 | 853.314-867.181 | 867.396-881.262 | 877.1-890.967 | |
9 | H | C | 868.1105-883.7105 | 876.51-892.11 | 905.561-921.161 | 911.203-926.823 | 925.094-940.694 | 934.693-952.092 | 938.758-954.358 | 959.9785-975.5785 | 975.82-991.42 | 986.738-1002.338 | |
10 | C | D | 964.567-981.901 | 973.9-991.233 | 1006.179-1023.512 | 1012.448-1029.781 | 1027.882-1045.2155 | 1038.547-1057.88 | 1043.064-1060.3975 | 1066.643-1083.976 | 1084.245-1101.578 | 1096.3755-1113.709 | |
11 | C#/Db | D#/Sb | 1061.024-1080.091 | 1071.39-1090.356 | 1106.797-1125.863 | 1113.693-1132.759 | 1130.67-1149.737 | 1142.402-1163.668 | 1147.3705-1166.437 | 1173.307-1192.374 | 1192.669-1211.736 | 1206.013-1225.08 | |
12 | D | S | 1157.481-1178.281 | 1168.68-1189.48 | 1207.4145-1228.2145 | 1214.9375-1235.7375 | 1233.459-1254.259 | 1246.256-1269.456 | 1251.677-1272.477 | 1279.971-1300.771 | 1301.0395-1321.8935 | 1315.651-1336.451 | |
13 | D#/Eb | S#/Eb | 1253.937-1276.471 | 1266.07-1288.603 | 1308.032-1330.566 | 1316.182-1338.716 | 1336.247-1358.78 | 1353.111-1275.244 | 1355.983-1378.517 | 1386.636-1409.169 | 1409.518-1425.288 | 1438.993-1447.8215 | |
14 | E | 1350.394-1374.661 | 1363.46-1387.726 | 1408.65-1432.917 | 1417.427-1441.694 | 1439.035-1463.302 | 1453.966-1481.032 | 1460.29-1484.556 | 1493.3-1517.567 | 1517.9425-1534.926 | 1541.778-1559.192 | ||
15 | F | 1446.851-1472.851 | 1460.85-1486.85 | 1509.268-1535.268 | 1518.672-1544.672 | 1541.823-1567.823 | 1557.82-1583.82 | 1564.596-1590.596 | 1599.964-1625.964 | 1626.366-1652.366 | 1644.563-1670.563 |
By a surprising coincidence, the 15ed of the Golden tenth (7φ+6)\(5φ^2)edo is almost exactly every third degree of 34edo. Additionally, those of the modal Golden tenths are almost exactly +1/28-syntonic comma 4ed(5/4) (Aeolian-Dorian), 9ed(5/3)/equal multiples of 18/17 (Subpental Dorian), 13ed(15/7) (Pental Dorian), 2ed(9/8) (Superpental Dorian), -1/12-syntonic comma 3ed(6/5) (Dorian-Mixolydian), 14ed(7/3)/equal multiples of 17/16/100π\3 cents (Subpental Mixolydian), 3ed(6/5) (Pental Mixolydian), -1/20-septimal comma 4ed(9/7)/-1/28-syntonic comma 14ed(12/5)/9ed(7/4) (Soft Superpental Mixolydian), 12ed(32/15) (Intense Superpental Mixolydian) and 8ed(5/3)/-1/9 schismic 9ed(16/9)/14ed(22/9) (Mixolydian-Ionian) respectively.