Opossum: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+ interval chain
m Oops
Line 17: Line 17:
|-
|-
| 1
| 1
| 161.4
| 160.0
| 10/9, 11/10, 12/11, 15/14
| 10/9, 11/10, 12/11, 15/14
|-
|-
| 2
| 2
| 322.7
| 320.0
| 6/5, 11/9
| 6/5, 11/9
|-
|-
| 3
| 3
| 484.1
| 480.0
| '''4/3''', 9/7
| '''4/3''', 9/7
|-
|-
| 4
| 4
| 645.5
| 640.0
| 10/7, '''16/11''', 22/15
| 10/7, '''16/11''', 22/15
|-
|-
| 5
| 5
| 806.8
| 800.0
| '''8/5''', 11/7
| '''8/5''', 11/7
|-
|-
| 6
| 6
| 968.2
| 960.0
| 12/7, '''16/9'''
| 12/7, '''16/9'''
|-
|-
| 7
| 7
| 1129.6
| 1120.0
| 40/21, 48/25, 64/33
| 40/21, 48/25, 64/33
|-
|-
| 8
| 8
| 90.9
| 80.0
| 16/15, 36/35
| 16/15, 36/35
|-
|-
| 9
| 9
| 252.3
| 240.0
| '''8/7'''
| '''8/7'''
|}
|}
<nowiki/>* In 15edo tuning, octave reduced
<nowiki/>* In 11-limit CWE tuning, octave reduced


== Tunings ==
== Tunings ==

Revision as of 13:16, 6 June 2025

Opossum is an alternative extension to porcupine. It is defined by tempering out 28/27 and 126/125.

See Porcupine family #Opossum for technical data.

Interval chain

In the following table, odd harmonics 1–11 and their inverses are in bold.

# Cents* Approximate ratios*
0 0.0 1/1
1 160.0 10/9, 11/10, 12/11, 15/14
2 320.0 6/5, 11/9
3 480.0 4/3, 9/7
4 640.0 10/7, 16/11, 22/15
5 800.0 8/5, 11/7
6 960.0 12/7, 16/9
7 1120.0 40/21, 48/25, 64/33
8 80.0 16/15, 36/35
9 240.0 8/7

* In 11-limit CWE tuning, octave reduced

Tunings

Tuning spectrum

Edo
generator
Eigenmonzo
(unchanged-interval)
Generator (¢) Comments
15/14 119.443
13/12 138.573
13/11 144.605
9/7 145.028
1\8 150.000
12/11 150.637
13/10 151.405
14/13 153.100
7/5 154.372
7/6 155.522
14/11 156.498
3\23 156.522
6/5 157.821
[0 15 6 34 -1 -15 158.421 13 limit least squares
5\38 157.895
7\53 158.491
15/13 158.710
[0 -5 3 19 158.732 7 limit least squares
8/7 159.019 7, 9, 11, 13 and 15 limit minimax
18/13 159.154
[0 32 23 35 -5 -21 159.377 15 limit least squares
[0 3 2 22 159.481 9 limit least squares
1815912315/1476395008 159.564 11 limit least squares
2\15 160.000
11/8 162.171
5/4 162.737 5 limit minimax
262144/234375 162.996 5 limit least squares
16/15 163.966
11/10 165.004
15/11 165.762
4/3 166.015
11/9 173.704
16/13 179.736
10/9 182.404